Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer ; 22(1): 4, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624516

RESUMO

BACKGROUND: Metastatic colonization is one of the critical steps in tumor metastasis. A pre-metastatic niche is required for metastatic colonization and is determined by tumor-stroma interactions, yet the mechanistic underpinnings remain incompletely understood. METHODS: PCR-based miRNome profiling, qPCR, immunofluorescent analyses evaluated the expression of exosomal miR-141 and cell-to-cell communication. LC-MS/MS proteomic profiling and Dual-Luciferase analyses identified YAP1 as the direct target of miR-141. Human cytokine profiling, ChIP, luciferase reporter assays, and subcellular fractionation analyses confirmed YAP1 in modulating GROα production. A series of in vitro tumorigenic assays, an ex vivo model and Yap1 stromal conditional knockout (cKO) mouse model demonstrated the roles of miR-141/YAP1/GROα/CXCR1/2 signaling cascade. RNAi, CRISPR/Cas9 and CRISPRi systems were used for gene silencing. Blood sera, OvCa tumor tissue samples, and tissue array were included for clinical correlations. RESULTS: Hsa-miR-141-3p (miR-141), an exosomal miRNA, is highly secreted by ovarian cancer cells and reprograms stromal fibroblasts into proinflammatory cancer-associated fibroblasts (CAFs), facilitating metastatic colonization. A mechanistic study showed that miR-141 targeted YAP1, a critical effector of the Hippo pathway, reducing the nuclear YAP1/TAZ ratio and enhancing GROα production from stromal fibroblasts. Stromal-specific knockout (cKO) of Yap1 in murine models shaped the GROα-enriched microenvironment, facilitating in vivo tumor colonization, but this effect was reversed after Cxcr1/2 depletion in OvCa cells. The YAP1/GROα correlation was demonstrated in clinical samples, highlighting the clinical relevance of this research and providing a potential therapeutic intervention for impeding premetastatic niche formation and metastatic progression of ovarian cancers. CONCLUSIONS: This study uncovers miR-141 as an OvCa-derived exosomal microRNA mediating the tumor-stroma interactions and the formation of tumor-promoting stromal niche through activating YAP1/GROα/CXCRs signaling cascade, providing new insight into therapy for OvCa patients with peritoneal metastases.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Humanos , Animais , Camundongos , Feminino , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Neoplasias Ovarianas/genética , MicroRNAs/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Microambiente Tumoral
2.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36499591

RESUMO

Ovarian cancer is one of the most lethal gynecological cancers worldwide. The poor prognosis of this malignancy is substantially attributed to the inadequate symptomatic biomarkers for early diagnosis and effective remedies to cure the disease against chemoresistance and metastasis. Ovarian cancer metastasis is often relatively passive, and the single clusters of ovarian cancer cells detached from the primary ovarian tumor are transcoelomic spread by the peritoneal fluid throughout the peritoneum cavity and omentum. Our earlier studies revealed that lipid-enriched ascitic/omental microenvironment enforced metastatic ovarian cancer cells to undertake metabolic reprogramming and utilize free fatty acids as the main energy source for tumor progression and aggression. Intriguingly, cell susceptibility to ferroptosis has been tightly correlated with the dysregulated fatty acid metabolism (FAM), and enhanced iron uptake as the prominent features of ferroptosis are attributed to the strengthened lipid peroxidation and aberrant iron accumulation, suggesting that ferroptosis induction is a targetable vulnerability to prevent cancer metastasis. Therefore, the standpoints about tackling altered FAM in combination with ferroptosis initiation as a dual-targeted therapy against advanced ovarian cancer were highlighted herein. Furthermore, a discussion on the prospect and challenge of inducing ferroptosis as an innovative therapeutic approach for reversing remedial resistance in cancer interventions was included. It is hoped this proof-of-concept review will indicate appropriate directions for speeding up the translational application of ferroptosis-inducing compounds (FINs) to improve the efficacy of ovarian cancer treatment.


Assuntos
Ferroptose , Neoplasias Ovarianas , Neoplasias Peritoneais , Feminino , Humanos , Metabolismo dos Lipídeos , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Omento , Microambiente Tumoral
3.
Int J Mol Sci ; 23(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36233339

RESUMO

Ovarian cancer is the deadliest gynecological cancer, leading to over 152,000 deaths each year. A late diagnosis is the primary factor causing a poor prognosis of ovarian cancer and often occurs due to a lack of specific symptoms and effective biomarkers for an early detection. Currently, cancer antigen 125 (CA125) is the most widely used biomarker for ovarian cancer detection, but this approach is limited by a low specificity. In recent years, multimarker panels have been developed by combining molecular biomarkers such as human epididymis secretory protein 4 (HE4), ultrasound results, or menopausal status to improve the diagnostic efficacy. The risk of ovarian malignancy algorithm (ROMA), the risk of malignancy index (RMI), and OVA1 assays have also been clinically used with improved sensitivity and specificity. Ongoing investigations into novel biomarkers such as autoantibodies, ctDNAs, miRNAs, and DNA methylation signatures continue to aim to provide earlier detection methods for ovarian cancer. This paper reviews recent advancements in molecular biomarkers for the early detection of ovarian cancer.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Algoritmos , Autoanticorpos , Biomarcadores Tumorais , Antígeno Ca-125 , Carcinoma Epitelial do Ovário , Feminino , Humanos , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/patologia , Proteínas/metabolismo
4.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35743298

RESUMO

Ovarian cancer is one of the most lethal gynecological malignancies worldwide, and chemoresistance is a critical obstacle in the clinical management of the disease. Recent studies have suggested that exploiting cancer cell metabolism by applying AMP-activated protein kinase (AMPK)-activating agents and distinctive adjuvant targeted therapies can be a plausible alternative approach in cancer treatment. Therefore, the perspectives about the combination of AMPK activators together with VEGF/PD-1 blockade as a dual-targeted therapy against ovarian cancer were discussed herein. Additionally, ferroptosis, a non-apoptotic regulated cell death triggered by the availability of redox-active iron, have been proposed to be governed by multiple layers of metabolic signalings and can be synergized with immunotherapies. To this end, ferroptosis initiating therapies (FITs) and metabolic rewiring and immunotherapeutic approaches may have substantial clinical potential in combating ovarian cancer development and progression. It is hoped that the viewpoints deliberated in this review would accelerate the translation of remedial concepts into clinical trials and improve the effectiveness of ovarian cancer treatment.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias Ovarianas , Proteínas Quinases Ativadas por AMP/metabolismo , Carcinoma Epitelial do Ovário , Feminino , Humanos , Lipídeos/uso terapêutico , Neoplasias Ovarianas/patologia , Receptor de Morte Celular Programada 1 , Fator A de Crescimento do Endotélio Vascular/uso terapêutico
5.
Front Oncol ; 12: 748403, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35155224

RESUMO

Glycolysis has been reported to be critical for cancer stem cells (CSCs), which are associated with tumor chemoresistance, metastasis and recurrence. Thus, selectively targeting glycolytic enzymes may be a potential therapy for ovarian cancer. 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), the main source of fructose-2,6-bisphosphate, controls the first committed step in glycolysis. We investigate the clinical significance and roles of PFKFB3 in ovarian cancer using in vitro and in vivo experiments. We demonstrate that PFKFB3 is widely overexpressed in ovarian cancer and correlates with advanced stage/grade and poor outcomes. Significant up-regulation of PFKFB3 was found in ascites and metastatic foci, as well as CSC-enriched tumorspheres and ALDH+CD44+ cells. 3PO, a PFKFB3 inhibitor, reduced lactate level and sensitized A2780CP cells to cisplatin treatment, along with the modulation of inhibitors of apoptosis proteins (c-IAP1, c-IAP2 and survivin) and an immune modulator CD70. Blockade of PFKFB3 by siRNA approach in the CSC-enriched subset led to decreases in glycolysis and CSC properties, and activation of the NF-κB cascade. PFK158, another potent inhibitor of PFKFB3, impaired the stemness of ALDH+CD44+ cells in vitro and in vivo, whereas ectopic expression of PFKFB3 had the opposite results. Overall, PFKFB3 was found to mediate metabolic reprogramming, chemoresistance, metastasis and stemness in ovarian cancer, possibly via the modulation of inhibitors of apoptosis proteins and the NF-κB signaling pathway; thus, suggesting that PFKFB3 may be a potential therapeutic target for ovarian cancer.

6.
Front Oncol ; 11: 738177, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34820325

RESUMO

Cholesterol is an essential substance in mammalian cells, and cholesterol metabolism plays crucial roles in multiple biological functions. Dysregulated cholesterol metabolism is a metabolic hallmark in several cancers, beyond the Warburg effect. Reprogrammed cholesterol metabolism has been reported to enhance tumorigenesis, metastasis and chemoresistance in multiple cancer types, including ovarian cancer. Ovarian cancer is one of the most aggressive malignancies worldwide. Alterations in metabolic pathways are characteristic features of ovarian cancer; however, the specific role of cholesterol metabolism remains to be established. In this report, we provide an overview of the key proteins involved in cholesterol metabolism in ovarian cancer, including the rate-limiting enzymes in cholesterol biosynthesis, and the proteins involved in cholesterol uptake, storage and trafficking. Also, we review the roles of cholesterol and its derivatives in ovarian cancer and the tumor microenvironment, and discuss promising related therapeutic targets for ovarian cancer.

7.
Cancers (Basel) ; 13(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34298618

RESUMO

In epithelial ovarian cancer (EOC), carboplatin/cisplatin-induced chemoresistance is a major hurdle to successful treatment. Aerobic glycolysis is a common characteristic of cancer. However, the role of glycolytic metabolism in chemoresistance and its impact on clinical outcomes in EOC are not clear. Here, we show a functional interaction between the key glycolytic enzyme hexokinase II (HKII) and activated P-p53 (Ser15) in the regulation of bioenergetics and chemosensitivity. Using translational approaches with proximity ligation assessment in cancer cells and human EOC tumor sections, we showed that nuclear HKII-P-p53 (Ser15) interaction is increased after chemotherapy, and functions as a determinant of chemoresponsiveness as a prognostic biomarker. We also demonstrated that p53 is required for the intracellular nuclear HKII trafficking in the control of glycolysis in EOC, associated with chemosensitivity. Mechanistically, cisplatin-induced P-p53 (Ser15) recruits HKII and apoptosis-inducing factor (AIF) in chemosensitive EOC cells, enabling their translocation from the mitochondria to the nucleus, eliciting AIF-induced apoptosis. Conversely, in p53-defective chemoresistant EOC cells, HKII and AIF are strongly bound in the mitochondria and, therefore, apoptosis is suppressed. Collectively, our findings implicate nuclear HKII-P-p53(Ser15) interaction in chemosensitivity and could provide an effective clinical strategy as a promising biomarker during platinum-based therapy.

8.
Oncogenesis ; 9(2): 24, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071289

RESUMO

Ovarian cancer is the most lethal gynecological malignancies owing to the lack of definitive symptoms until development of widespread metastases. Identification of novel prognostic and therapeutic targets is therefore an urgent need to improve survival. Here, we demonstrated high expression of the mitochondrial gatekeeping enzyme, pyruvate dehydrogenase kinase 1 (PDK1), in both clinical samples and cell lines of ovarian cancer. PDK1 expression was significantly associated with metastasis, reduced chemosensitivity, and poor overall and disease-free survival, and further highlighted as an independent prognostic factor. Silencing of PDK1 retarded lactate production, ovarian cancer cell adhesion, migration, invasion, and angiogenesis, and consequently metastasis, concomitant with decreased α5ß1 integrin expression. Phospho-kinase array profiling and RNA sequencing analyses further revealed reduction of JNK activation and IL-8 expression in PDK1-depleted cells. Conversely, PDK1 overexpression promoted cell adhesion via modulation of α5ß1 integrins, along with cell migration, invasion, and angiogenesis through activation of JNK/IL-8 signaling. PDK1 depletion additionally hindered tumor growth and dissemination in nude mice in vivo. Importantly, PDK1 levels were upregulated upon treatment with conditioned medium from omental tissues, which in turn promoted metastasis. Our findings suggest that PDK1, which is regulated by the tumor microenvironment, controls lactate production and promotes ovarian cancer cell metastasis via modulation of α5ß1 integrin and JNK/IL-8 signaling. To our knowledge, this is the first report to demonstrate an association between PDK1 and survival in patients with ovarian cancer, supporting its efficacy as a valuable prognostic marker and therapeutic molecular target for the disease.

9.
Cancers (Basel) ; 11(6)2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31212816

RESUMO

Metabolic reprogramming is a common phenomenon in cancers. Thus, glycolytic enzymes could be exploited to selectively target cancer cells in cancer therapy. Hexokinase 2 (HK2) converts glucose to glucose-6-phosphate, the first committed step in glucose metabolism. Here, we demonstrated that HK2 was overexpressed in ovarian cancer and displayed significantly higher expression in ascites and metastatic foci. HK2 expression was significantly associated with advanced stage and high-grade cancers, and was an independent prognostic factor. Functionally, knockdown of HK2 in ovarian cancer cell lines and ascites-derived tumor cells hindered lactate production, cell migration and invasion, and cell stemness properties, along with reduced FAK/ERK1/2 activation and metastasis- and stemness-related genes. 2-DG, a glycolysis inhibitor, retarded cell migration and invasion and reduced stemness properties. Inversely, overexpression of HK2 promoted cell migration and invasion through the FAK/ERK1/2/MMP9 pathway, and enhanced stemness properties via the FAK/ERK1/2/NANOG/SOX9 cascade. HK2 abrogation impeded in vivo tumor growth and dissemination. Notably, ovarian cancer-associated fibroblast-derived IL-6 contributed to its up-regulation. In conclusion, HK2, which is regulated by the tumor microenvironment, controls lactate production and contributes to ovarian cancer metastasis and stemness regulation via FAK/ERK1/2 signaling pathway-mediated MMP9/NANOG/SOX9 expression. HK2 could be a potential prognostic marker and therapeutic target for ovarian cancer.

10.
Cancer Cell Int ; 18: 65, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29743815

RESUMO

BACKGROUND: Ovarian cancer is the most lethal gynaecological malignancy. Chemotherapy is the main stay of treatment for metastatic disease, with modest response rates but significant side effects. Therefore, there is a need for alternative therapies that can control the disease while offering good quality of life. Ovarian cancer cells express both estrogen receptor subtypes (ERα and ERß). There is growing evidence that ERß is anti-oncogenic. Genistein and daidzein are phytoestrogens found in soybeans and they display higher affinity to bind ERß. ERB-041 is a potent selective ERß agonist. In this study, we aimed to investigate the effects of genistein, daidzein and ERB-041 on ovarian cancer. METHODS: Ovarian cancer cell lines were treated with genistein, daidzein and ERB-041 in pharmacological doses. Cell migration, invasion, proliferation, cell cycle arrest, apoptosis and sphere formation were assessed by Transwell migration and invasion assays, XTT assay, focus formation, flow cytometry and sphere formation assay, respectively. Immunoblotting analysis was performed to determine the downstream signaling pathways. RESULTS: We found that genistein, daidzein and ERB-041 significantly inhibited ovarian cancer cell migration, invasion, proliferation, as well as induced cell cycle arrest and apoptosis. Significantly inhibitory effect on the size and number of sphere formed in genistein, daidzein and ERB-041 treated cells was also demonstrated. Moreover, genistein, daidzein and ERB-041 treatment reduced p-FAK, p-PI3K, p-AKT, p-GSK3ß, p21 or cyclin D1 expression in ovarian cancer cells. CONCLUSION: Genistein, daidzein and ERB-041 decreased ovarian cancer cell migration, invasion, proliferation and sphere formation, and induced cell cycle arrest and apoptosis with altered FAK and PI3K/AKT/GSK signaling and p21/cyclin D1 expression, suggesting their roles on ovarian cancer cell metastasis, tumorigenesis and stem-like properties and their potential as alternative therapies for ovarian cancer patients.

11.
BMC Cancer ; 17(1): 606, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28859612

RESUMO

BACKGROUND: Due to the presence of both classical estrogen receptor (ERα) and another ER subtype (ERß) in ovarian cancer, hormonal treatment is an attractive option. However, response to tamoxifen in ovarian cancer is modest. The presence of ERß variants further complicated the issue. We have recently shown that specifically targeting ER subtypes using selective ER modulators showed opposing functions of ER subtypes on cell growth. In the present study, the clinical significance of ERα and ERß variants (ß1, ß2 and ß5) and the functional effects of ERß2 and ERß5 in ovarian cancer was investigated. METHODS: ERα, ERß1, ERß2 and ERß5 expression were evaluated by immunohistochemistry in 106 ovarian cancer tissues. The association between ERs expression and clinicopathological parameters or prognosis was analyzed. Ectopic expression of ERß2 and ERß5 followed by functional assays were performed in ovarian cancer cell lines in order to detect their effects on cell invasion and proliferation. RESULTS: We found significantly higher nuclear (n)ERα and nERß5 and lower cytoplasmic (c)ERα expression in advanced cancers. Significantly lower ERß1 expression was also detected in high grade cancers. Significant loss of nERα and cERß2 expression were observed in clear cell histological subtypes. Higher nERß5 and lower cERß5 expression were associated with serous/clear cell subtypes, poor disease-free and overall survival. Positive cERα and higher cERß1 expression were significantly associated with better disease-free and overall survival. Furthermore, we found nERß5 as an independent prognostic factor for overall survival. Functionally, overexpression of ERß5 enhanced ovarian cancer cell migration, invasion and proliferation via FAK/c-Src activation whereas ERß2 induced cell migration and invasion. CONCLUSIONS: Since tamoxifen binds to both ERα and ERß1 which appear to bear opposing oncogenic roles, the histotypes-specific expression pattern of ERs indicates that personalized treatment for women based on ERs expression using selective estrogen receptor modulators may improve response rate. This study also suggests nERß5 as a potential prognostic marker and therapeutic target in ovarian cancer.


Assuntos
Proliferação de Células , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas/metabolismo , Adulto , Idoso , Linhagem Celular Tumoral , Receptor beta de Estrogênio/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Invasividade Neoplásica , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/patologia , Prognóstico , Isoformas de Proteínas/genética
12.
PLoS One ; 10(7): e0133467, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26218748

RESUMO

p21-activated kinases (Paks) are serine/threonine protein kinases involved in biological events linked to malignant tumor progression. In this study, expression of Pak1, p-Pak2 Ser20, Pak4, pPak4 Ser474 in 21 normal endometrium, 16 hyperplastic endometrium without atypia, 17 atypical complex hyperplasia and 67 endometrial cancers was assessed by immunohistochemistry and correlated with clinicopathological parameters. We also accessed the proliferative role and downstream targets of Pak1 in endometrial cancer. Pak1 was expressed in cytoplasm whereas Pak4 and p-Pak4 were expressed in both cytoplasm and nucleus of endometrial tissues. In normal endometrium, significantly higher Pak1 (P = 0.028) and cytoplasmic p-Pak2 (P = 0.048) expression was detected in proliferative endometrium than secretory endometrium. Pak1, cytoplasmic and nuclear Pak4 and nuclear p-Pak4 was significantly overexpressed in endometrial cancer when compared to atrophic endometrium (all P<0.05). Moreover, type I endometrioid carcinomas showed significantly higher Pak1 expression than type II non-endometrioid carcinomas (P<0.001). On the other hand, Pak1, Pak4 and p-Pak4 expression negatively correlated with histological grade (all P<0.05) while p-Pak2 and cytoplasmic Pak4 expression inversely correlated with myometrial invasion (all P<0.05). Furthermore, patients with endometrial cancers with lower cytoplasmic Pak4 expression showed poorer survival (P = 0.026). Multivariate analysis showed cytoplasmic Pak4 is an independent prognostic factor. Functionally, knockdown of Pak1, but not Pak4, in endometrial cancer cell line led to reduced cell proliferation along with reduced cyclin D1, estrogen receptor (ERα) and progestogen receptor (PR) expression. Significant correlation between Pak1 and PR expression was also detected in clinical samples. Our findings suggest that Pak1 and cytoplasmic p-Pak2 may promote cell proliferation in normal endometrium during menstral cycle. Pak1, cytoplasmic and nuclear Pak4 and nuclear p-Pak4 are involved in the pathogenesis of endometrial cancer especially in postmenopausal women. Pak1 promote endometrial cancer cell proliferation, particular in type I endometrioid carcinoma. Cytoplasmic Pak4 can be potential prognostic marker in endometrial cancer.


Assuntos
Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Quinases Ativadas por p21/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Proliferação de Células , Citoplasma/metabolismo , Neoplasias do Endométrio/mortalidade , Feminino , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Fosforilação , Adulto Jovem , Quinases Ativadas por p21/genética
13.
Am J Pathol ; 185(7): 2038-48, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26093985

RESUMO

Human placental trophoblasts can be considered pseudomalignant, with tightly controlled proliferation, apoptosis, and invasiveness. Gestational trophoblastic disease (GTD) represents a family of heterogeneous trophoblastic lesions with aberrant apoptotic and proliferative activities and dysregulation of cell signaling pathways. We characterize the oncogenic effects of factor that binds to the inducer of short transcripts of HIV-1 [FBI-1, alias POZ and Krüppel erythroid myeloid ontogenic factor (POKEMON)/ZBTB7A] in GTD and its role in promoting cell aggressiveness in vitro and tumor growth in vivo. IHC studies showed increased nuclear expression of FBI-1, including hydatidiform moles, choriocarcinoma (CCA), and placental site trophoblastic tumor, in GTD. In JAR and JEG-3 CCA cells, ectopic FBI-1 expression opposed apoptosis through repression of proapoptotic genes (eg, BAK1, FAS, and CASP8). FBI-1 overexpression also promoted Akt activation, as indicated by Akt-pS473 phosphorylation. FBI-1 overexpression promoted mobility and invasiveness of JEG-3 and JAR, but not in the presence of the phosphoinositide 3-kinase inhibitor LY294002. These findings suggest that FBI-1 could promote cell migration and invasion via phosphoinositide 3-kinase/Akt signaling. In vivo, nude mice injected with CCA cells with stable FBI-1 knockdown demonstrated reduced tumor growth compared with that in control groups. These findings suggest that FBI-1 is clinically associated with the progression of, and may be a therapeutic target in, GTD, owing to its diverse oncogenic effects on dysregulated trophoblasts.


Assuntos
Coriocarcinoma/patologia , Proteínas de Ligação a DNA/genética , Doença Trofoblástica Gestacional/patologia , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Animais , Anticorpos , Apoptose , Testes de Carcinogenicidade , Movimento Celular , Coriocarcinoma/genética , Coriocarcinoma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Doença Trofoblástica Gestacional/genética , Doença Trofoblástica Gestacional/metabolismo , Humanos , Mola Hidatiforme/genética , Mola Hidatiforme/metabolismo , Mola Hidatiforme/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteína Oncogênica v-akt/genética , Fosfatidilinositol 3-Quinases/genética , Placenta/metabolismo , Gravidez , Coelhos , Fatores de Transcrição/metabolismo , Trofoblastos/metabolismo
14.
PLoS One ; 9(11): e113478, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25411964

RESUMO

AIM: Deregulation of FOXM1 has been documented in various cancers. The aim of this study was to evaluate the role of FOXM1 in ovarian cancer tumorigenesis and paclitaxel resistance. EXPERIMENTAL DESIGN: Expression of FOXM1 was examined in 119 clinical samples by immunohistochemistry and correlated with clinicopathological parameters. Effects of FOXM1 knockdown on ovarian cancer cell migration, invasion and mitotic catastrophe were also studied. qPCR and ChIP-qPCR were used to establish KIF2C as a novel FOXM1 target gene implicated in chemoresistance. RESULTS: High nuclear FOXM1 expression in ovarian cancer patient samples was significantly associated with advanced stages (P = 0.035), shorter overall (P = 0.019) and disease-free (P = 0.014) survival. Multivariate analysis confirmed FOXM1 expression as an independent prognostic factor for ovarian cancer. FOXM1 knockdown significantly inhibited migration and invasion of ovarian cancer cells and enhanced paclitaxel-mediated cell death and mitotic catastrophe in a p53-independent manner. Bioinformatics analysis suggested a number of potential transcription targets of FOXM1. One of the potential targets, KIF2C, exhibited similar expression pattern to FOXM1 in chemosensitive and chemoresistant cells in response to paclitaxel treatment. FOXM1 could be detected at the promoter of KIF2C and FOXM1 silencing significantly down-regulated KIF2C. CONCLUSION: Our findings suggest that FOXM1 is associated with poor patient outcome and contributes to paclitaxel resistance by blocking mitotic catastrophe. KIF2C is identified as a novel FOXM1 transcriptional target that may be implicated in the acquisition of chemoresistance. FOXM1 should be further investigated as a potential prognostic marker and therapeutic target for ovarian cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Fatores de Transcrição Forkhead/metabolismo , Neoplasias Ovarianas/patologia , Paclitaxel/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Linhagem Celular Tumoral , Movimento Celular , Intervalo Livre de Doença , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Feminino , Seguimentos , Proteína Forkhead Box M1 , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/genética , Pontos de Checagem da Fase G2 do Ciclo Celular , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Cinesinas/genética , Estadiamento de Neoplasias , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/mortalidade , Paclitaxel/uso terapêutico , Prognóstico , Reação em Cadeia da Polimerase em Tempo Real
15.
PLoS One ; 9(9): e108248, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25265279

RESUMO

The kinesin protein Kif7 has been recognized as an integral component of hedgehog signalling. Aberrant activation of hedgehog signalling has been implicated in many human solid tumours. Gestational trophoblastic disease includes frankly malignant choriocarcinoma and potentially malignant hydatidiform mole. Here we investigated the hedgehog signalling components expression profiles in gestational trophoblastic disease. Downregulation of Gli1, Gli2, Gli3 and Kif7 was demonstrated in clinical samples of choriocarcinoma and hydatidiform moles as well as choriocarcinoma cell lines when compared with normal placentas. Ectopic expression of Kif7 in two choriocarcinoma cell lines JAR and JEG-3 led to a decrease in cell growth and increase in apoptosis demonstrated by MTT and TUNEL assays, respectively. Overexpression of Kif7 also led to suppressed cell migration through transwell assay. In contrast, knocking down Kif7 in HTR-8/SVneo, an immortalized trophoblast cell line, increased cell number over time and increased the migratory ability of the cells. Taken together, Kif7 may contribute to pathogenesis of gestational trophoblastic disease through enhancing survival and promoting dissemination of trophoblasts.


Assuntos
Apoptose/genética , Coriocarcinoma/genética , Mola Hidatiforme/genética , Cinesinas/biossíntese , Fatores de Transcrição/biossíntese , Linhagem Celular , Movimento Celular , Proliferação de Células/genética , Sobrevivência Celular/genética , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Fatores de Transcrição Kruppel-Like/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Proteínas Nucleares/biossíntese , Placenta/patologia , Gravidez , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais/genética , Trofoblastos/patologia , Proteína GLI1 em Dedos de Zinco , Proteína Gli2 com Dedos de Zinco , Proteína Gli3 com Dedos de Zinco
16.
J Endocrinol ; 221(2): 325-36, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24819599

RESUMO

Ovarian cancer cells express both estrogen receptor α (ERα) and ERß, and hormonal therapy is an attractive treatment option because of its relatively few side effects. However, estrogen was previously shown to have opposite effects in tumors expressing ERα compared with ERß, indicating that the two receptor subtypes may have opposing effects. This may explain the modest response to nonselective estrogen inhibition in clinical practice. In this study, we aimed to investigate the effect of selectively targeting each ER subtype on ovarian cancer growth. Ovarian cancer cell lines SKOV3 and OV2008, expressing both ER subtypes, were treated with highly selective ER modulators. Sodium 3'-(1-(phenylaminocarbonyl)-3,4-tetrazolium)-bis(4-methoxy-6-nitro) benzene sulfonic acid hydrate (XTT) assay revealed that treatment with 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride (MPP) (ERα antagonist) or 2,3-bis(4-hydroxy-phenyl)-propionitrile (DPN) (ERß agonist) significantly suppressed cell growth in both cell lines. In contrast, 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol (PPT) (ERα agonist) or 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]-pyrimidin-3-yl]phenol (PHTPP) (ERß antagonist) significantly enhanced cell growth. These results were confirmed on a xenograft model where SKOV3 cells were injected s.c. into ovariectomized mice. We observed that the average size of xenografts in both the DPN-treated group and the MPP-treated group was significantly smaller than that for the vehicle-treated group. In addition, we found that phospho-AKT expressions in SKOV3 cells were reduced by 80% after treatment with MPP and DPN, indicating that the AKT pathway was involved. The combined treatment with MPP and DPN had a synergistic effect in suppressing ovarian cancer cell growth. Our findings indicate that targeting ER subtypes may enhance the response to hormonal treatment in women with ovarian cancer.


Assuntos
Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/antagonistas & inibidores , Terapia de Alvo Molecular , Neoplasias Ovarianas/tratamento farmacológico , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Animais , Linhagem Celular Tumoral , Estradiol/farmacologia , Estradiol/uso terapêutico , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Moduladores Seletivos de Receptor Estrogênico/farmacologia
17.
Oncotarget ; 5(4): 944-58, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24659709

RESUMO

Epithelial ovarian cancer is a highly lethal and aggressive gynecological malignancy. The high mortality rate is due in part to the fact that many advanced cancer patients become refractory to current chemotherapeutic agents, leading to tumor recurrence and death. However, the underlying mechanisms leading to chemoresistance remain obscure. Here, we report that the loss of miR-199b-5p due to progressive epigenetic silencing leads to the activation of the JAG1-mediated Notch1 signaling cascade, thereby leading to the development of acquired chemoresistance in ovarian cancer. Using miRCURY LNA™ microRNA array and Q-PCR analyses of two pairs of cisplatin-sensitive and -resistant ovarian cancer cell lines, we identified miR-199b-5p as significantly down-regulated in cisplatin-resistant ovarian cancer cells and confirmed that miR-199b-5p is clinically associated with advanced and poor survival ovarian cancers. Interestingly, the loss of miR-199b-5p could be restored by 5-Aza-dC-mediated demethylation, and methylated specific PCR (MS-PCR), bisulfite-sequencing and pyrosequencing revealed that the promoter region of miR-199b-5p was hypermethylated. Computational and mechanistic analyses identified JAG1 as a primary target of miR-199b-5p. Notably, the reduced expression of miR-199b-5p was found to be inversely correlated with the increased expression of JAG1 using an ovarian cancer tissue array. Enforced expression of miR-199b-5p sensitized ovarian cancer cells to cisplatin-induced cytotoxicity both in vitro and in vivo. Conversely, re-expression of miR-199b-5p and siRNA-mediated JAG1 knockdown or treatment with Notch specific inhibitor γ-secretase (GSI) attenuated JAG1-Notch1 signaling activity, thereby enhancing cisplatin-mediated cell cytotoxicity. Taken together, our study suggests that the epigenetic silencing of miR-199b-5p during tumor progression is significantly associated with acquired chemoresistance in ovarian cancer through the activation of JAG1-Notch1 signaling.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , MicroRNAs/genética , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Receptor Notch1/metabolismo , Animais , Antineoplásicos/farmacologia , Proteínas de Ligação ao Cálcio/genética , Carcinoma Epitelial do Ovário , Cisplatino/farmacologia , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Epigênese Genética , Epigenômica , Feminino , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteína Jagged-1 , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Ovarianas/metabolismo , Receptor Notch1/genética , Proteínas Serrate-Jagged , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Carcinogenesis ; 34(9): 2170-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23671128

RESUMO

Gestational choriocarcinoma is a malignant tumor derived from placental trophoblast and the most aggressive member of gestational trophoblastic disease (GTD). Apoptosis-stimulating protein of p53-2 (ASPP2) is a member of ASPP family that transactivates p53 and thereby functions as a tumor suppressor. In this study, the expression profile of ASPP2 in choriocarcinoma was examined in comparison with normal placentas and hydatidiform moles, the latter being a type of GTD that carries malignant potential. Downregulation of ASPP2 messenger RNA and protein was demonstrated in choriocarcinoma by quantitative PCR and immunohistochemistry. ASPP2-transfected choriocarcinoma cells (JEG-3 and JAR) showed an increase in apoptosis and a decrease in cell migration as detected by TdT-mediated dUTP nick end labeling and wound healing assays, respectively, illustrating the complex action of ASPP2 on cell functions other than programmed cell death. Activated Src is known to be important in tumor progression. Transfection of ASPP2 but not ASPP1, another tumor-suppressive ASPP, was found to be related to subsequent decreased Src-pY416 phosphorylation, suggesting an inactivating effect of ASPP2 on Src. Moreover, this ASPP2-mediated inactivation of Src could be abolished by RNA interference with C-terminal Src kinase (Csk), a kinase that can inhibit Src activation. Our findings suggested that the ability of ASPP2 to attenuate Src activation was specific to ASPP2 in a Csk-dependent manner. Taken together, we demonstrated a loss of tumor-suppressive ASPP2 in choriocarcinoma with effects on cell migration and apoptosis. We also unveiled a possible mechanistic link between ASPP2 and Csk/Src signaling pathway, implicating the multiple cellular functions of ASPP2.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Movimento Celular/genética , Coriocarcinoma/genética , Doença Trofoblástica Gestacional/genética , Quinases da Família src/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Tirosina Quinase CSK , Linhagem Celular Tumoral , Coriocarcinoma/patologia , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Doença Trofoblástica Gestacional/patologia , Humanos , Gravidez , Interferência de RNA , Transdução de Sinais , Quinases da Família src/metabolismo
19.
PLoS One ; 7(11): e47201, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23144806

RESUMO

Despite being an essential vitamin, folate has been implicated to enhance tumor growth, as evidenced by reports on overexpression of folate receptor alpha (FRα) in carcinomas. The role of another folate transporter, reduced folate carrier (RFC), is largely unknown. This study investigated the roles of folate, FRα and RFC in ovarian cancers. We demonstrated FRα mRNA and protein overexpression and reduced RFC expression in association with FRα gene amplification and RFC promoter hypermethylation, respectively. FRα overexpression was associated with tumor progression while RFC expression incurred a favorable clinical outcome. Such reciprocal expression pattern was also observed in ovarian cancer cell lines. Folate was shown to promote cancer cell proliferation, migration and invasion in vitro, and down-regulate E-cadherin expression. This effect was blocked after either stable knockdown of FRα or ectopic overexpression of RFC. This hitherto unreported phenomenon suggests that, RFC can serve as a balancing partner of FRα and confer a protective effect in patients with high FRα-expressing ovarian carcinomas, as evidenced by their prolonged overall and disease-free survivals. In conclusion, we report on the paradoxical impact of FRα (putative oncogenic) and RFC (putative tumor suppressive) in human malignancies. FRα and RFC may potentially be explored as therapeutic target or prognostic marker respectively. We recommend caution and additional research on folate supplements in cancer patients.


Assuntos
Receptor 1 de Folato/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Proteína Carregadora de Folato Reduzido/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Intervalo Livre de Doença , Feminino , Receptor 1 de Folato/metabolismo , Humanos , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/terapia , Ovário/metabolismo , Ovário/patologia , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Proteína Carregadora de Folato Reduzido/metabolismo , Regulação para Cima , Adulto Jovem
20.
Histol Histopathol ; 27(9): 1121-30, 2012 09.
Artigo em Inglês | MEDLINE | ID: mdl-22806899

RESUMO

In recent years, much attention has been paid to the concept of cancer stem cells (CSC) and self-renewal related pathways in cancer biology. This review outlines the dysregulated stemness-related genes or transcription factors in gynecological cancers. Hedgehog (Hh) and Notch signaling are important pathways in tissue pattern programming and cell fate determination during embryonic development. Hyperactivation of these two pathways was frequently observed in gynecological malignancies such as ovarian, endometrial and cervical cancers. In contrast, the expression profiles of pluripotency-regulating core transcriptional circuitry: Nanog, Oct4 and Sox2 appear heterogeneous. Among these transcription factors, overexpression of Nanog was found to exert a prominent effect in gynecological tumorigenesis, while dysregulations of Oct4 and Sox2 may vary in a context dependent manner. On the other hand, the isolation of putative CSC illustrates a hierarchy model of tumor heterogeneity, in which only a subset of cells among biologically distinct populations can initiate tumor growth. Re-activation of these pluripotent transcription factors (Nanog, Oct4 and/or Sox2) in association with distinct tumorigenic properties could be found in clones isolated from gynecological tumors using various approaches. Recent understanding on the roles of Hh and Notch signaling in enhancing CSC survival may help to better understand the mechanism of carcinogenesis and identify new pharmaceutical targets for gynecological malignancies.


Assuntos
Neoplasias dos Genitais Femininos/genética , Células-Tronco Neoplásicas/fisiologia , Animais , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...