Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(6): 3852-3865, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36877935

RESUMO

Compounds that inhibit glutathione peroxidase 4 (GPX4) hold promise as cancer therapeutics in their ability to induce a form of nonapoptotic cell death called ferroptosis. Our research identified 24, a structural analog of the potent GPX4 inhibitor RSL3, that has much better plasma stability (t1/2 > 5 h in mouse plasma). The bioavailability of 24 provided efficacious plasma drug concentrations with IP dosing, thus enabling in vivo studies to assess tolerability and efficacy. An efficacy study in mouse using a GPX4-sensitive tumor model found that doses of 24 up to 50 mg/kg were tolerated for 20 days but had no effect on tumor growth, although partial target engagement was observed in tumor homogenate.


Assuntos
Ferroptose , Neoplasias , Camundongos , Animais , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Disponibilidade Biológica
2.
Drug Metab Dispos ; 49(1): 94-110, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33139460

RESUMO

Translational and ADME Sciences Leadership Group Induction Working Group (IWG) presents an analysis on the time course for cytochrome P450 induction in primary human hepatocytes. Induction of CYP1A2, CYP2B6, and CYP3A4 was evaluated by seven IWG laboratories after incubation with prototypical inducers (omeprazole, phenobarbital, rifampicin, or efavirenz) for 6-72 hours. The effect of incubation duration and model-fitting approaches on induction parameters (Emax and EC50) and drug-drug interaction (DDI) risk assessment was determined. Despite variability in induction response across hepatocyte donors, the following recommendations are proposed: 1) 48 hours should be the primary time point for in vitro assessment of induction based on mRNA level or activity, with no further benefit from 72 hours; 2) when using mRNA, 24-hour incubations provide reliable assessment of induction and DDI risk; 3) if validated using prototypical inducers (>10-fold induction), 12-hour incubations may provide an estimate of induction potential, including characterization as negative if <2-fold induction of mRNA and no concentration dependence; 4) atypical dose-response ("bell-shaped") curves can be addressed by removing points outside an established confidence interval and %CV; 5) when maximum fold induction is well defined, the choice of nonlinear regression model has limited impact on estimated induction parameters; 6) when the maximum fold induction is not well defined, conservative DDI risk assessment can be obtained using sigmoidal three-parameter fit or constraining logistic three- or four-parameter fits to the maximum observed fold induction; 7) preliminary data suggest initial slope of the fold induction curve can be used to estimate Emax/EC50 and for induction risk assessment. SIGNIFICANCE STATEMENT: Regulatory agencies provide inconsistent guidance on the optimum length of time to evaluate cytochrome P450 induction in human hepatocytes, with EMA recommending 72 hours and FDA suggesting 48-72 hours. The Induction Working Group analyzed a large data set generated by seven member companies and determined that induction response and drug-drug risk assessment determined after 48-hour incubations were representative of 72-hour incubations. Additional recommendations are provided on model-fitting techniques for induction parameter estimation and addressing atypical concentration-response curves.


Assuntos
Desenvolvimento de Medicamentos , Interações Medicamentosas , Controle de Medicamentos e Entorpecentes , Medição de Risco/métodos , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2B6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Desenvolvimento de Medicamentos/métodos , Desenvolvimento de Medicamentos/normas , Controle de Medicamentos e Entorpecentes/métodos , Controle de Medicamentos e Entorpecentes/organização & administração , Indução Enzimática , Guias como Assunto , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Modelos Biológicos , Farmacocinética , Reprodutibilidade dos Testes
3.
Xenobiotica ; 50(9): 1101-1114, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31902291

RESUMO

H3B-8800, a novel orally available modulator of the SF3b complex, which potently and preferentially kills spliceosome-mutant tumor cells, is in clinical development for the treatment of advanced myeloid malignancies. We characterized the pharmacokinetics, metabolism and disposition of H3B-8800 in rats, monkeys and humans.In vitro, H3B-8800 is a substrate of CYP3A4/5, flavin-containing monooxygenases (FMOs) and P-glycoprotein (P-gp), and showed a favorable drug-drug interaction profile as a perpetrator.Following oral dosing of 14C-H3B-8800 in bile-duct cannulated SD rats, 54.7% of the dosed radioactivity was excreted in the bile, with less found in feces (36.8%). The low amount in urine (3.7%), suggests that renal elimination is a minor pathway of clearance for H3B-8800.In Long-Evans rats, radioactivity derived from 14C-H3B-8800 was rapidly absorbed, with the highest distribution in the ocular, metabolic/excretory, and gastrointestinal tract tissues. No radioactivity was detected in the central nervous system.Seven metabolites were observed in human plasma following 4 daily doses of 40 mg H3B-8800. H3B-68736 (N-desmethyl), H3B-77176 (N-oxide), and unchanged H3B-8800 were the prominent components in human plasma, at 27.3%, 18.1%, and 33.2%, respectively, of the total drug-related material in a pooled AUC0-24h sample. The same 7 metabolites were observed in monkey plasma.


Assuntos
Antineoplásicos/metabolismo , Piperazinas/metabolismo , Piridinas/metabolismo , Animais , Bile/metabolismo , Disponibilidade Biológica , Fezes/química , Haplorrinos , Humanos , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Distribuição Tecidual
4.
Drug Metab Pharmacokinet ; 33(5): 219-227, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30219715

RESUMO

Celecoxib was characterized as a substrate of human cytochrome P450 (CYP) 2D6 in vitro. In recombinant CYP2D6, celecoxib hydroxylation showed atypical substrate inhibition kinetics with apparent Km, Ki, and Vmax of 67.2 µM, 12.6 µM, and 1.33 µM/min, respectively. In human liver microsomes (HLMs), a concentration-dependent inhibition of celecoxib hydroxylation by quinidine was observed after CYP2C9 and CYP3A4 were inhibited. In individual HLMs with variable CYP2D6 activities, a significant correlation was observed between celecoxib hydroxylation and CYP2D6-selective dextromethorphan O-demethylation when CYP2C9 and CYP3A4 activities were suppressed (r = 0.97, P < 0.0001). Molecular modeling showed two predominant docking modes of celecoxib with CYP2D6, resulting in either a substrate or an inhibitor. A second allosteric binding antechamber, which stabilized the inhibition mode, was revealed. Modeling results were consistent with the observed substrate inhibition kinetics. Using HLMs from individual donors, the relative contribution of CYP2D6 to celecoxib metabolism was found to be highly variable and dependent on CYP2C9 genotypes, ranging from no contribution in extensive metabolizers with CYP2C9*1*1 genotype to approximately 30% in slow metabolizers with allelic variants CYP2C9*1*3 and CYP2C9*3*3. These results demonstrate that celecoxib may become a potential victim of CYP2D6-associated drug-drug interactions, particularly in individuals with reduced CYP2C9 activity.


Assuntos
Celecoxib/metabolismo , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Variação Genética/genética , Celecoxib/análise , Celecoxib/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Humanos , Cinética , Modelos Moleculares , Estrutura Molecular , Quinidina/farmacologia , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
5.
Drug Metab Dispos ; 46(9): 1285-1303, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29959133

RESUMO

The Innovation and Quality Induction Working Group presents an assessment of best practice for data interpretation of in vitro induction, specifically, response thresholds, variability, application of controls, and translation to clinical risk assessment with focus on CYP3A4 mRNA. Single concentration control data and Emax/EC50 data for prototypical CYP3A4 inducers were compiled from many human hepatocyte donors in different laboratories. Clinical CYP3A induction and in vitro data were gathered for 51 compounds, 16 of which were proprietary. A large degree of variability was observed in both the clinical and in vitro induction responses; however, analysis confirmed in vitro data are able to predict clinical induction risk. Following extensive examination of this large data set, the following recommendations are proposed. a) Cytochrome P450 induction should continue to be evaluated in three separate human donors in vitro. b) In light of empirically divergent responses in rifampicin control and most test inducers, normalization of data to percent positive control appears to be of limited benefit. c) With concentration dependence, 2-fold induction is an acceptable threshold for positive identification of in vitro CYP3A4 mRNA induction. d) To reduce the risk of false positives, in the absence of a concentration-dependent response, induction ≥ 2-fold should be observed in more than one donor to classify a compound as an in vitro inducer. e) If qualifying a compound as negative for CYP3A4 mRNA induction, the magnitude of maximal rifampicin response in that donor should be ≥ 10-fold. f) Inclusion of a negative control adds no value beyond that of the vehicle control.


Assuntos
Indutores do Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/metabolismo , Controle de Medicamentos e Entorpecentes , Invenções/normas , Controle de Qualidade , RNA Mensageiro/metabolismo , Indutores do Citocromo P-450 CYP3A/farmacologia , Interações Medicamentosas/fisiologia , Flumazenil/metabolismo , Flumazenil/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Rifampina/metabolismo , Rifampina/farmacologia
6.
Br J Clin Pharmacol ; 84(5): 952-960, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29341245

RESUMO

AIMS: Avatrombopag, a thrombopoietin receptor agonist, is a substrate of cytochrome P450 (CYP) 2C9 and CYP3A. We assessed three drug-drug interactions of avatrombopag as a victim with dual or selective CYP2C9/3A inhibitors and inducers. METHODS: This was a three-part, open-label study. Forty-eight healthy subjects received single 20 mg doses of avatrombopag alone or with one of 3 CYP2C9/3A inhibitors or inducers: fluconazole 400 mg once daily for 16 days, itraconazole 200 mg twice daily on Day 1 and 200 mg once daily on Days 2-16, or rifampicin 600 mg once daily for 16 days. Pharmacokinetics, pharmacodynamics (platelet count) and safety of avatrombopag were evaluated. RESULTS: Coadministration of a single 20-mg dose of avatrombopag with fluconazole at steady-state resulted in 2.16-fold increase of AUC of avatrombopag, prolonged terminal elimination phase half-life (from 19.7 h to 39.9 h) and led to a clinically significant increase in maximum platelet count (1.66-fold). Itraconazole had a mild increase on both avatrombopag pharmacokinetics and pharmacodynamics compared to fluconazole. Coadministration of rifampicin caused a 0.5-fold decrease in AUC and shortened terminal elimination phase half-life (from 20.3 h to 9.84 h), but has no impact on maximum platelet count. Coadministration with interacting drugs was found to be generally safe and well-tolerated. CONCLUSIONS: The results from coadministration of fluconazole or itraconazole suggest that CYP2C9 plays a more predominant role in metabolic clearance of avatrombopag than CYP3A. To achieve comparable platelet count increases when avatrombopag is coadministered with CYP3A and CYP2C9 inhibitors, an adjustment in the dose or duration of treatment is recommended, while coadministration with strong inducers is not currently recommended.


Assuntos
Interações Medicamentosas , Fluconazol/farmacologia , Itraconazol/farmacologia , Rifampina/farmacologia , Tiazóis/farmacologia , Tiazóis/farmacocinética , Tiofenos/farmacologia , Tiofenos/farmacocinética , Adolescente , Adulto , Indutores do Citocromo P-450 CYP2C9/farmacologia , Inibidores do Citocromo P-450 CYP2C9/farmacologia , Indutores do Citocromo P-450 CYP3A/farmacologia , Inibidores do Citocromo P-450 CYP3A/farmacologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Contagem de Plaquetas/estatística & dados numéricos , Receptores de Trombopoetina/agonistas , Tiazóis/efeitos adversos , Tiazóis/sangue , Tiofenos/efeitos adversos , Tiofenos/sangue , Adulto Jovem
7.
Drug Metab Dispos ; 45(10): 1049-1059, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28646080

RESUMO

The European Medicines Agency (EMA), the Pharmaceutical and Medical Devices Agency (PMDA), and the Food and Drug Administration (FDA) have issued guidelines for the conduct of drug-drug interaction studies. To examine the applicability of these regulatory recommendations specifically for induction, a group of scientists, under the auspices of the Drug Metabolism Leadership Group of the Innovation and Quality (IQ) Consortium, formed the Induction Working Group (IWG). A team of 19 scientists, from 16 of the 39 pharmaceutical companies that are members of the IQ Consortium and two Contract Research Organizations reviewed the recommendations, focusing initially on the current EMA guidelines. Questions were collated from IQ member companies as to which aspects of the guidelines require further evaluation. The EMA was then approached to provide insights into their recommendations on the following: 1) evaluation of downregulation, 2) in vitro assessment of CYP2C induction, 3) the use of CITCO as the positive control for CYP2B6 induction by CAR, 4) data interpretation (a 2-fold increase in mRNA as evidence of induction), and 5) the duration of incubation of hepatocytes with test article. The IWG conducted an anonymous survey among IQ member companies to query current practices, focusing specifically on the aforementioned key points. Responses were received from 19 companies. All data and information were blinded before being shared with the IWG. The results of the survey are presented, together with consensus recommendations on downregulation, CYP2C induction, and CYP2B6 positive control. Results and recommendations related to data interpretation and induction time course will be reported in subsequent articles.


Assuntos
Citocromo P-450 CYP2B6/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação para Baixo/fisiologia , Interações Medicamentosas/fisiologia , Preparações Farmacêuticas/metabolismo , Indústria Farmacêutica/métodos , Humanos , Estados Unidos , United States Food and Drug Administration
8.
Drug Metab Dispos ; 45(2): 183-189, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27934636

RESUMO

Accurately assessing the contribution of cytochrome P450 (P450) isoforms to overall metabolic clearance is important for prediction of clinical drug-drug interactions (DDIs). The relative activity factor (RAF) approach in P450 reaction phenotyping assumes that the interaction between P450-selective probes and testing systems is the same as the interaction of drug candidate with those systems. To test this assumption, an intersystem clearance ratio (ICR) was created to evaluate the difference in values between RAF-scaled intrinsic clearance (CLint) and measured CLint in human liver microsomes (HLMs). The RAF value for CYP3A4 or CYP2C9 derived from a particular P450-selective probe reaction was applied to calculate RAF-scaled CLint for other probe reactions of the same P450 isoform in a crossover manner and compared with the measured HLM CLint When RAF derived from midazolam or nifedipine was used for CYP3A4, the ICR for testosterone 6ß-hydroxylation was 31 and 25, respectively, suggesting significantly diverse interactions of CYP3A4 probes with the testing systems. Such ICR differences were less profound among probes for CYP2C9. In addition, these RAF values were applied to losartan and meloxicam, whose metabolism is mostly CYP2C9 mediated. Only using the RAF derived from testosterone for CYP3A4 produced the expected CYP2C9 contribution of 72%-87% and 47%-69% for metabolism of losartan and meloxicam, respectively. RAF derived from other CYP3A4 probes would have attributed predominantly to CYP3A4 and led to incorrect prediction of DDIs. Our study demonstrates a significant impact of probe substrate selection on P450 phenotyping using the RAF approach, and the ICR may provide a potential solution.


Assuntos
Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP3A/metabolismo , Microssomos Hepáticos/enzimologia , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Estudos Cross-Over , Interações Medicamentosas , Humanos , Técnicas In Vitro , Taxa de Depuração Metabólica , Microssomos Hepáticos/efeitos dos fármacos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...