Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 8160, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208485

RESUMO

Aedes aegypti, the principal global vector of arboviral diseases and previously considered to oviposit and undergo preimaginal development only in fresh water, has recently been shown to be capable of developing in coastal brackish water containing up to 15 g/L salt. We investigated surface changes in eggs and larval cuticles by atomic force and scanning electron microscopy, and larval susceptibility to two widely-used larvicides, temephos and Bacillus thuringiensis, in brackish water-adapted Ae. aegypti. Compared to freshwater forms, salinity-tolerant Ae. aegypti had rougher and less elastic egg surfaces, eggs that hatched better in brackish water, rougher larval cuticle surfaces, and larvae more resistant to the organophosphate insecticide temephos. Larval cuticle and egg surface changes in salinity-tolerant Ae. aegypti are proposed to respectively contribute to the increased temephos resistance and egg hatchability in brackish water. The findings highlight the importance of extending Aedes vector larval source reduction efforts to brackish water habitats and monitoring the efficacy of larvicides in coastal areas worldwide.


Assuntos
Aedes , Inseticidas , Animais , Temefós , Larva , Salinidade , Mosquitos Vetores , Inseticidas/farmacologia , Resistência a Inseticidas
2.
Trop Med Infect Dis ; 7(10)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36288027

RESUMO

Contrary to expectation, dengue incidence decreased in many countries during the period when stringent population movement restrictions were imposed to combat COVID-19. Using a seasonal autoregressive integrated moving average model, we previously reported a 74% reduction in the predicted number of dengue cases from March 2020 to April 2021 in the whole of Sri Lanka, with reductions occurring in all 25 districts in the country. The reduction in dengue incidence was accompanied by an 87% reduction in larval collections of Aedes vectors in the northern city of Jaffna. It was proposed that movement restrictions led to reduced human contact and blood feeding by Aedes vectors, accompanied by decreased oviposition and vector densities, which were responsible for diminished dengue transmission. These findings are extended in the present study by investigating the relationship between dengue incidence, population movement restrictions, and vector larval collections between May 2021 and July 2022, when movement restrictions began to be lifted, with their complete removal in November 2021. The new findings further support our previous proposal that population movement restrictions imposed during the COVID-19 pandemic reduced dengue transmission primarily by influencing human-Aedes vector interaction dynamics.

3.
Med Vet Entomol ; 36(4): 496-502, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35838413

RESUMO

Three Anopheles stephensi biotypes have historically been differentiated through variations in the mode numbers of egg ridges and adult spiracular indices. Anopheles stephensi odorant-binding protein 1 gene (AsteObp1) sequences in Iran and Afghanistan have been recently interpreted to suggest that the three biotypes are sibling species. AsteObp1 intron 1 sequences, mode numbers of egg ridges and spiracular indices of An. stephensi in Jaffna city in Sri Lanka were therefore investigated in field-collected mosquitoes and short-term laboratory colonies established from them. AsteObp1 intron 1 sequences revealed the region to be polymorphic with four unique sequences, ASJF1-4, present in both short-term laboratory colonies and field-collected An. stephensi. The spiracular index did not relate to the mode number of egg ridges in Jaffna An. stephensi. The results suggested that numbers of egg ridges, spiracular indices and AsteObp1 intron 1 sequences were not useful for differentiating An. stephensi biotypes in Jaffna. It is proposed that the observed differences between An. stephensi mosquitoes in Jaffna now result from normal population variance in the context of rapidly changing bionomics in India and northern Sri Lanka.


Assuntos
Anopheles , Malária , Animais , Anopheles/genética , Íntrons , Sri Lanka , Malária/veterinária
4.
BMC Genomics ; 22(1): 253, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33836668

RESUMO

BACKGROUND: Aedes aegypti mosquito, the principal global vector of arboviral diseases, lays eggs and undergoes larval and pupal development to become adult mosquitoes in fresh water (FW). It has recently been observed to develop in coastal brackish water (BW) habitats of up to 50% sea water, and such salinity tolerance shown to be an inheritable trait. Genomics of salinity tolerance in Ae. aegypti has not been previously studied, but it is of fundamental biological interest and important for controlling arboviral diseases in the context of rising sea levels increasing coastal ground water salinity. RESULTS: BW- and FW-Ae. aegypti were compared by RNA-seq analysis on the gut, anal papillae and rest of the carcass in fourth instar larvae (L4), proteomics of cuticles shed when L4 metamorphose into pupae, and transmission electron microscopy of cuticles in L4 and adults. Genes for specific cuticle proteins, signalling proteins, moulting hormone-related proteins, membrane transporters, enzymes involved in cuticle metabolism, and cytochrome P450 showed different mRNA levels in BW and FW L4 tissues. The salinity-tolerant Ae. aegypti were also characterized by altered L4 cuticle proteomics and changes in cuticle ultrastructure of L4 and adults. CONCLUSIONS: The findings provide new information on molecular and ultrastructural changes associated with salinity adaptation in FW mosquitoes. Changes in cuticles of larvae and adults of salinity-tolerant Ae. aegypti are expected to reduce the efficacy of insecticides used for controlling arboviral diseases. Expansion of coastal BW habitats and their neglect for control measures facilitates the spread of salinity-tolerant Ae. aegypti and genes for salinity tolerance. The transmission of arboviral diseases can therefore be amplified in multiple ways by salinity-tolerant Ae. aegypti and requires appropriate mitigating measures. The findings in Ae. aegypti have attendant implications for the development of salinity tolerance in other fresh water mosquito vectors and the diseases they transmit.


Assuntos
Aedes , Aedes/genética , Animais , Larva , Proteômica , Salinidade , Elevação do Nível do Mar , Transcriptoma
6.
Parasit Vectors ; 14(1): 162, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33736702

RESUMO

BACKGROUND: The larval bionomics of Aedes across the Jaffna peninsula in northern Sri Lanka was investigated to obtain information needed for developing more effective larval source reduction measures to control endemic arboviral diseases. METHODS: The habitats of preimaginal stages of Aedes mosquitoes were surveyed, and ovitrap collections were carried out in densely populated areas of the Jaffna peninsula. Aedes larval productivities were analysed against habitat characteristics, rainfall and dengue incidence. Adults emerging from collected larvae were tested for dengue virus (DENV). RESULTS: Only Aedes aegypti, Ae. albopictus and Ae. vittatus were identified in the field habitat collections and ovitraps. Aedes aegypti was the predominant species in both the field habitat and ovitrap collections, followed by Ae. albopictus and small numbers of Ae. vittatus. Tires and open drains were the preferred field habitats for Ae. aegypti, although larval productivity was higher in discarded plastic containers. The three Aedes species differed in field habitat preferences. Concomitant presence of the three Aedes species was observed in the field habitats and ovitraps. Larval productivities were inversely correlated with the salinity of the field habitat. Rainfall in the preceding month significantly correlated with larval productivity in the field habitats. DENV serotype 2 was detected in Ae. aegypti collected from ovitraps in the city of Jaffna. High Breteau, House and Container indices of 5.1, 5.1 and 7.9%, respectively, were observed in the field habitat surveys and ovitrap indices of up to 92% were found in Jaffna city. CONCLUSIONS: Aedes larval indices in populated areas of the peninsula showed a high potential for dengue epidemics. Unacceptable littering practices, failure to implement existing dengue control guidelines, vertical transmission of DENV in vector mosquitoes and preimaginal development in brackish water and open surface drains, as well as in domestic wells that provide potable water, are serious constraints to the current Aedes larval source reduction methods used to control dengue in the Jaffna peninsula. Similar shortcomings in arboviral disease control are likely present in other resource-constrained tropical coastal zones worldwide.


Assuntos
Aedes/fisiologia , Dengue/prevenção & controle , Dengue/transmissão , Ecologia/métodos , Larva/crescimento & desenvolvimento , Mosquitos Vetores/virologia , Animais , Dengue/epidemiologia , Ecossistema , Feminino , Salinidade , Sri Lanka/epidemiologia
7.
Parasit Vectors ; 13(1): 156, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32228675

RESUMO

BACKGROUND: Malaria was eliminated from Sri Lanka in 2013. However, the influx of infected travelers and the presence of potent anopheline vectors can re-initiate transmission in Jaffna city, which is separated by a narrow strait from the malaria-endemic Indian state of Tamil Nadu. METHODS: Anopheline larvae were collected from different habitats in Jaffna city and the susceptibility of emergent adults to DDT, malathion and deltamethrin investigated. RESULTS: Anopheline larvae were found in wells, surface-exposed drains, ponds, water puddles and water storage tanks, with many containing polluted, alkaline and brackish water. Anopheles culicifacies, An. subpictus, An. stephensi and An. varuna were identified in the collections. Adults of the four anopheline species were resistant to DDT. Anopheles subpictus and An. stephensi were resistant while An. culicifacies and An. varuna were possibly resistant to deltamethrin. Anopheles stephensi was resistant, An. subpictus possibly resistant while An. varuna and An. culicifacies were susceptible to malathion. DNA sequencing showed a L1014F (TTA to TTC) mutation in the IIS6 transmembrane segment of the voltage-gated sodium channel protein in deltamethrin-resistant An. subpictus-a mutation previously observed in India but not Sri Lanka. CONCLUSION: Anopheles subpictus in Jaffna, like An. stephensi, may have recently originated in coastal Tamil Nadu. Besides infected overseas travelers, wind- and boat-borne carriage of Plasmodium-infected anophelines across the Palk Strait can potentially reintroduce malaria transmission to Jaffna city. Adaptation to diverse larval habitats and resistance to common insecticides in anophelines are identified as potential problems for vector control should this happen.


Assuntos
Resistência a Inseticidas/efeitos dos fármacos , Inseticidas/farmacologia , Malária/prevenção & controle , Malária/transmissão , Mosquitos Vetores/efeitos dos fármacos , Animais , Anopheles/efeitos dos fármacos , Anopheles/genética , DDT/farmacologia , Ecologia , Índia , Larva/efeitos dos fármacos , Larva/genética , Malation , Nitrilas , Piretrinas , Recidiva , Análise de Sequência , Análise de Sequência de DNA , Sri Lanka
8.
Parasit Vectors ; 12(1): 337, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31287014

RESUMO

BACKGROUND: Aedes aegypti were found developing in the water in open public drains (drain-water, DW) in Jaffna city in northern Sri Lanka, a location where the arboviral diseases dengue and chikungunya are endemic. METHODS: Susceptibilities to the common insecticides dichlorodiphenyltrichloroethane (DDT), malathion, propoxur, permethrin and deltamethrin and activities of the insecticide-detoxifying enzymes carboxylesterase (EST), glutathione S-transferase (GST) and monooxygenase (MO) were compared in adult Ae. aegypti developing in DW and fresh water (FW). RESULTS: DW Ae. aegypti were resistant to the pyrethroids deltamethrin and permethrin, while FW Ae. aegypti were susceptible to deltamethrin but possibly resistant to permethrin. Both DW and FW Ae. aegypti were resistant to DDT, malathion and propoxur. Greater pyrethroid resistance in DW Ae. aegypti was consistent with higher GST and MO activities. CONCLUSIONS: The results demonstrate the potential for insecticide resistance developing in Ae. aegypti adapted to DW. Urbanization in arboviral disease-endemic countries is characterized by a proliferation of open water drains and therefore the findings identify a potential new challenge to global health.


Assuntos
Aedes/enzimologia , Arbovírus/fisiologia , Resistência a Inseticidas , Mosquitos Vetores/enzimologia , Águas Residuárias/parasitologia , Aedes/efeitos dos fármacos , Aedes/virologia , Animais , Carboxilesterase/metabolismo , DDT/farmacologia , Feminino , Saúde Global , Glutationa Transferase/metabolismo , Humanos , Inseticidas/farmacologia , Malation/farmacologia , Masculino , Camundongos , Oxigenases de Função Mista/metabolismo , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/virologia , Nitrilas/farmacologia , Permetrina/farmacologia , Propoxur/farmacologia , Piretrinas/farmacologia
9.
Front Public Health ; 7: 53, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30923705

RESUMO

The malaria vector Anopheles stephensi is found in wide tracts of Asia and the Middle East. The discovery of its presence for the first time in the island of Sri Lanka in 2017, poses a threat of malaria resurgence in a country which had eliminated the disease in 2013. Morphological and genetic characterization showed that the efficient Indian urban vector form An. stephensi sensu stricto or type form, has recently expanded its range to Jaffna and Mannar in northern Sri Lanka that are in proximity to Tamil Nadu state in South India. Comparison of the DNA sequences of the cytochrome oxidase subunit 1 gene in An. stephensi in Jaffna and Mannar in Sri Lanka and Tamil Nadu and Puducherry states in South India showed that a haplotype that is due to a sequence change from valine to methionine in the cytochrome oxidase subunit 1 present in the Jaffna and Mannar populations has not been documented so far in Tamil Nadu/Puducherry populations. The Jaffna An. stephensi were closer to Tamil Nadu/Puducherry populations and differed significantly from the Mannar populations. The genetic findings cannot differentiate between separate arrivals of the Jaffna and Mannar An. stephensi from Tamil Nadu or a single arrival and dispersion to the two locations accompanied by micro-evolutionary changes. Anopheles stephensi was observed to undergo preimaginal development in fresh and brackish water domestic wells and over ground cement water storage tanks in the coastal urban environment of Jaffna and Mannar. Anopheles stephensi in Jaffna was resistant to the common insecticides deltamethrin, dichlorodiphenyltrichloroethane and Malathion. Its preimaginal development in wells and water tanks was susceptible to predation by the larvivorous guppy fish Poecilia reticulata. The arrival, establishment, and spread of An. stephensi in northern Sri Lanka are analyzed in relation to anthropogenic factors that favor its range expansion. The implications of the findings for global public health challenges posed by malaria and other mosquito-borne diseases are discussed.

10.
Parasit Vectors ; 12(1): 13, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30616643

RESUMO

BACKGROUND: Sri Lanka has been malaria-free since 2013 but re-introduction of malaria transmission by infected overseas travelers is possible due to a prevalence of potent malaria vectors. Knowledge of the insecticide resistance status among Anopheles vectors is important if vector control has to be reintroduced in the island. The present study investigated the insecticide susceptibility levels and resistance mechanisms of Anopheles sundaicus (sensu lato) (previously classified as Anopheles subpictus species B) an important malaria vector in the Jaffna Peninsula and it surroundings in northern Sri Lanka after indoor residual spraying of insecticides was terminated in 2013. RESULTS: Species-specific PCR assays identified An. sundaicus (s.l.) in four locations in the Jaffna and adjacent Kilinochchi districts. Bioassays confirmed that An. sundaicus (s.l.) collected in Kilinochchi were completely susceptible to 0.05% deltamethrin and 5% malathion and resistant to 4% dichlorodiphenyltrichloroethane (DDT), whereas those from Jaffna were relatively susceptible to all three insecticides. Kilinochchi populations of An. sundaicus (s.l.) showed significantly higher glutathione S-transferase activity than population from Jaffna. However, Jaffna An. sundaicus (s.l.) had significantly higher Propoxur-resistant acetylcholinesterase activity. Activities of non-specific esterases and monooxygenases were not significantly elevated in An. sundaicus (s.l.) collected in both districts. CONCLUSIONS: The susceptibility to malathion and deltamethrin in An. sundaicus (s.l.) suggests that they can be still used for controlling this potential malaria vector in the Jaffna Peninsula and adjacent areas. Continuing country-wide studies on other malaria vectors and their insecticide susceptibilities are important in this regard.


Assuntos
Anopheles/enzimologia , Inativação Metabólica , Resistência a Inseticidas , Inseticidas/farmacologia , Malária/transmissão , Mosquitos Vetores/enzimologia , Animais , Anopheles/efeitos dos fármacos , DDT/farmacologia , Malation/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Nitrilas/farmacologia , Propoxur/farmacologia , Piretrinas/farmacologia , Sri Lanka
11.
Parasit Vectors ; 11(1): 3, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298698

RESUMO

BACKGROUND: Anopheles stephensi, the major vector of urban malaria in India, was recently detected for the first time in Sri Lanka in Mannar Island on the northwestern coast. Since there are different biotypes of An. stephensi with different vector capacities in India, a study was undertaken to further characterise the genotype and biotype of An. stephensi in Mannar Island. METHODS: Mosquito larvae were collected in Pesalai village in Mannar and maintained in the insectary until adulthood. Adult An. stephensi were identified morphologically using published keys. Identified adult An. stephensi were molecularly characterized using two mitochondrial (cox1 and cytb) and one nuclear (ITS2) markers. Their PCR-amplified target fragments were sequenced and checked against available sequences in GenBank for phylogenetic analysis. The average spiracular and thoracic lengths and the spiracular index were determined to identify biotypes based on corresponding indices for Indian An. stephensi. RESULTS: All DNA sequences for the Mannar samples matched reported sequences for An. stephensi from the Middle East and India. However, a single nucleotide variation in the cox1 sequence suggested an amino acid change from valine to methionine in the cox1 protein in Sri Lankan An. stephensi. Morphological data was consistent with the presence of the Indian urban vector An. stephensi type-form in Sri Lanka. CONCLUSIONS: The present study provides a more detailed molecular characterization of An. stephensi and suggests the presence of the type-form of the vector for the first time in Sri Lanka. The single mutation in the cox1 gene may be indicative of a founder effect causing the initial diversification of An. stephensi in Sri Lanka from the Indian form. The distribution of the potent urban vector An. stephensi type-form needs to be established by studies throughout the island as its spread adds to the challenge of maintaining the country's malaria-free status.


Assuntos
Anopheles/classificação , Anopheles/crescimento & desenvolvimento , Genética Populacional , Genótipo , Fenótipo , Estruturas Animais/anatomia & histologia , Animais , Anopheles/anatomia & histologia , Anopheles/genética , Citocromos b/genética , DNA Espaçador Ribossômico/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Entomologia/métodos , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Sri Lanka
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...