Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(10): 15334-15341, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157637

RESUMO

We report a bending-insensitive multi-core fiber (MCF) for lensless endoscopy imaging with modified fiber geometry that enables optimal light coupling in and out of the individual cores. In a previously reported bending insensitive MCF (twisted MCF), the cores are twisted along the length of the MCF allowing for the development of flexible thin imaging endoscopes with potential applications in dynamic and freely moving experiments. However, for such twisted MCFs the cores are seen to have an optimum coupling angle which is proportional to their radial distance from the center of the MCF. This brings coupling complexity and potentially degrades the endoscope imaging capabilities. In this study, we demonstrate that by introducing a small section (1 cm) at two ends of the MCF, where all the cores are straight and parallel to the optical axis one can rectify the above coupling and output light issues of the twisted MCF, enabling the development of bend-insensitive lensless endoscopes.

2.
Opt Lett ; 46(19): 4968-4971, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598245

RESUMO

In this Letter, we report a high-efficiency, miniaturized, ultra-fast coherent beam, combined with 3D-printed micro-optics directly on the tip of a multicore fiber bundle. The highly compact device footprint (180 µm in diameter) facilitates its incorporation into a minimally invasive ultra-thin nonlinear endoscope to perform two-photon imaging.


Assuntos
Endoscópios , Endoscopia , Endoscopia Gastrointestinal , Óptica e Fotônica , Fótons , Impressão Tridimensional
3.
Opt Lett ; 45(19): 5567-5570, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33001949

RESUMO

We report a line-scanning imaging modality of compressive Raman technology with a single-pixel detector. The spatial information along the illumination line is encoded onto one axis of a digital micromirror device, while spectral coding masks are applied along the orthogonal direction. We demonstrate imaging and classification of three different chemical species.

4.
Optica ; 7(5): 417-424, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-34926725

RESUMO

For sparse samples or in the presence of ambient light, the signal-to-noise ratio (SNR) performance of single-point-scanning coherent anti-Stokes Raman scattering (CARS) images is not optimized. As an improvement, we propose replacing the conventional CARS focus-point illumination with a periodically structured focus line while continuing to collect the transmitted CARS intensity on a single detector. The object information along the illuminated line is obtained by numerically processing the CARS signal recorded for various periods of the structured focus line. We demonstrate experimentally the feasibility of this spatial frequency modulated imaging (SPIFI) in CARS (SPIFI-CARS) and SHG (SPIFI-SHG) and identify situations where its SNR is better than that of the single-point-scanning approach.

5.
Methods ; 174: 20-26, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30946895

RESUMO

We demonstrate subwavelength axial sectioning on biological samples with a stimulated emission depletion (STED) microscope combined with supercritical angle fluorescence (SAF) detection. SAF imaging is a powerful technique for imaging the membrane of the cell based on the direct exploitation of the fluorophore emission properties. Indeed, only when fluorophores are close to the interface can their evanescent near-field emission become propagative and be detected beyond the critical angle. Therefore, filtering out the SAF emission from the undercritical angle fluorescence (UAF) emission in the back focal plane of a high-NA objective lens permits nanometer axial sectioning of fluorescent emitters close to the coverslip. When combined with STED microscopy, a straightforward gain in axial resolution can be reached without any alteration of the STED beam path. Indeed, STED-SAF implementation only requires a modification in the detection path of the STED microscope and thus could be widely implemented.


Assuntos
Desenho de Equipamento/métodos , Aumento da Imagem/métodos , Microscopia de Fluorescência/instrumentação , Animais , Células COS , Membrana Celular , Chlorocebus aethiops , Fluorescência , Imunofluorescência , Corantes Fluorescentes/química , Processamento de Imagem Assistida por Computador , Microscopia/instrumentação , Microscopia/métodos , Microscopia Confocal , Microscopia de Fluorescência/métodos , Microtúbulos , Software
6.
Opt Lett ; 44(8): 1936-1939, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30985779

RESUMO

We report a line scanning imaging modality of compressive Raman technology with spatial frequency modulated illumination using a single pixel detector. We demonstrate the imaging and classification of three different chemical species at line scan rates of 40 Hz.

7.
Opt Lett ; 43(18): 4493-4496, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30211898

RESUMO

A simple technique for far-field single-shot noninterferometric determination of the phase transmission matrix of a multicore fiber with over 100 cores is presented. This phase retrieval technique relies on the aperiodic arrangement of the cores.

8.
Opt Lett ; 43(15): 3638-3641, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30067643

RESUMO

We report two-photon lensless imaging through a novel Fermat's golden spiral multicore fiber. This unique layout optimizes the sidelobe levels, field of view, crosstalk, group delay, and mode density to achieve a sidelobe contrast of at least 10.9 dB. We demonstrate experimentally the ability to generate and scan a focal point with femtosecond pulses and perform two-photon imaging.

9.
Methods ; 140-141: 212-222, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29454082

RESUMO

Combining stimulated emission depletion and fluorescence correlation spectroscopy (STED-FCS) provides a powerful and sensitive tool for studying the molecular dynamics in live cells with high spatio-temporal resolution. STED-FCS gives access to molecular diffusion characteristic at the nanoscale occurring within short period of times. However due to the incomplete suppression of fluorescence in the STED process, the STED-FCS point spread function (PSF) deviates from a Gaussian shape and challenges the analysis of the auto-correlation curves obtained by FCS. Here, we model the effect of the incomplete fluorescence suppression in STED-FCS experiments and propose a new fitting model improving the accuracy of the diffusion times and average molecule numbers measurements. The implementation of a STED module with pulsed laser source on a commercial confocal/FCS microscope allowed us to apply the STED-background corrected model to fit the STED-FCS measurements. The experimental results are in good accordance with the theoretical analysis both for the number of molecules and the diffusion time which decrease accordingly with the STED power.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia Intravital/métodos , Modelos Químicos , Espectrometria de Fluorescência/métodos , Citoesqueleto de Actina/metabolismo , Animais , Células COS , Chlorocebus aethiops , Difusão , Fluorescência , Microscopia Intravital/instrumentação , Citometria de Varredura a Laser/instrumentação , Citometria de Varredura a Laser/métodos , Lasers , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Software , Espectrometria de Fluorescência/instrumentação
10.
Light Sci Appl ; 7: 10, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30839624

RESUMO

Coherent Raman scattering microscopy is a fast, label-free, and chemically specific imaging technique that shows high potential for future in vivo optical histology. However, the imaging depth in tissues is limited to the sub-millimeter range because of absorption and scattering. Realization of coherent Raman imaging using a fiber endoscope system is a crucial step towards imaging deep inside living tissues and providing information that is inaccessible with current microscopy tools. Until now, the development of coherent Raman endoscopy has been hampered by several issues, mainly related to the fiber delivery of the excitation pulses and signal collection. Here, we present a flexible, compact, coherent Raman, and multimodal nonlinear endoscope (4.2 mm outer diameter, 71 mm rigid length) based on a resonantly scanned hollow-core Kagomé-lattice double-clad fiber. The fiber design enables distortion-less, background-free delivery of femtosecond excitation pulses and back-collection of nonlinear signals through the same fiber. Sub-micrometer spatial resolution over a large field of view is obtained by combination of a miniature objective lens with a silica microsphere lens inserted into the fiber core. We demonstrate high-resolution, high-contrast coherent anti-Stokes Raman scattering, and second harmonic generation endoscopic imaging of biological tissues over a field of view of 320 µm at a rate of 0.8 frames per second. These results pave the way for intraoperative label-free imaging applied to real-time histopathology diagnosis and surgery guidance.

11.
Opt Express ; 25(25): 31863-31875, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29245856

RESUMO

We examine the impact of fiber bends on ultrashort pulse propagation in a 169-core multicore fiber (MCF) by numerical simulations and experimental measurements. We show that an L-shaped bend (where only one end of the MCF is fixed) induces significant changes in group delays that are a function of core position but linear along the bending axis with a slope directly proportional to the bending angle. For U- and S-shaped bends (where both ends of the MCF are fixed) the induced refractive index and group delay changes are much smaller than the residual, intrinsic inter-core group delay differences of the unbent MCF. We further show that when used for point-scanning lensless endoscopy with ultrashort pulse excitation, bend-induced group delays in the MCF degrade the point-spread function due to spatiotemporal coupling. Our results show that bend-induced effects in MCFs can be parametrized with only two parameters: the angle of the bend axis and the amplitude of the bend. This remains valid for bend amplitudes up to at least 200 degrees.

12.
Opt Lett ; 42(3): 647-650, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28146549

RESUMO

Multicore fiber bundles are widely used in endoscopy due to their miniature size and their direct imaging capabilities. They have recently been used, in combination with spatial light modulators, in various realizations of endoscopy with little or no optics at the distal end. These schemes require characterization of the relative phase offsets between the different cores, typically done using off-axis holography, thus requiring both an interferometric setup and, typically, access to the distal tip. Here we explore the possibility of employing phase retrieval to extract the necessary phase information. We show that in the noise-free case, disordered fiber bundles are superior for phase retrieval over their periodic counterparts, and demonstrate experimentally accurate retrieval of phase information for up to 10 simultaneously illuminated cores. Thus, phase retrieval is presented as a viable alternative for real-time monitoring of phase distortions in multicore fiber bundles.

13.
Opt Lett ; 41(20): 4771-4774, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28005889

RESUMO

We demonstrate pixelation-free real-time widefield endoscopic imaging through an aperiodic multicore fiber (MCF) without any distal opto-mechanical elements or proximal scanners. Exploiting the memory effect in MCFs, the images in our system are directly obtained without any post-processing using a static wavefront correction obtained from a single calibration procedure. Our approach allows for video-rate 3D widefield imaging of incoherently illuminated objects with imaging speed not limited by the wavefront-shaping device refresh rate.

14.
J Biomed Opt ; 21(12): 121506, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27722748

RESUMO

We take stock of the progress that has been made into developing ultrathin endoscopes assisted by wave front shaping. We focus our review on multicore fiber-based lensless endoscopes intended for multiphoton imaging applications. We put the work into perspective by comparing with alternative approaches and by outlining the challenges that lie ahead.


Assuntos
Endoscópios , Tecnologia de Fibra Óptica , Imagem Óptica , Desenho de Equipamento
15.
Opt Lett ; 41(15): 3531-4, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27472611

RESUMO

We investigate lensless endoscopy using coherent beam combining and aperiodic multicore fibers (MCF). We show that diffracted orders, inherent to MCF with periodically arranged cores, dramatically reduce the field-of-view (FoV), and that randomness in MCF core positions can increase the FoV up to the diffraction limit set by a single fiber core, while maintaining a MCF experimental feasibility. We demonstrate experimentally pixelation-free lensless endoscopy imaging over a 120 µm FoV with an aperiodic MCF designed with widely spaced cores. We show that this system is suitable to perform beam scanning imaging by simply applying a tilt to the proximal wavefront.

16.
Opt Lett ; 41(9): 2105-8, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27128085

RESUMO

We report an experimental test of single-shot polarimetry applied to the problem of real-time monitoring of the output polarization states in each core within a multicore fiber bundle. The technique uses a stress-engineered optical element, together with an analyzer, and provides a point spread function whose shape unambiguously reveals the polarization state of a point source. We implement this technique to monitor, simultaneously and in real time, the output polarization states of up to 180 single-mode fiber cores in both conventional and polarization-maintaining fiber bundles. We demonstrate also that the technique can be used to fully characterize the polarization properties of each individual fiber core, including eigen-polarization states, phase delay, and diattenuation.

17.
Opt Express ; 24(2): 825-41, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26832466

RESUMO

Rigid endoscopes like graded-index (GRIN) lenses are known tools in biological imaging, but it is conceptually difficult to miniaturize them. In this letter, we demonstrate an ultra-thin rigid endoscope with a diameter of only 125 µm. In addition, we identify a domain where two-photon endoscopic imaging with fs-pulse excitation is possible. We validate the ultra-thin rigid endoscope consisting of a few cm of graded-index multi-mode fiber by using it to acquire optically sectioned two-photon fluorescence endoscopic images of three-dimensional samples.


Assuntos
Diagnóstico por Imagem/instrumentação , Endoscópios , Fótons , Imageamento Tridimensional , Lasers
18.
Opt Lett ; 39(3): 555-8, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24487864

RESUMO

We demonstrate subwavelength sectioning on biological samples with a conventional confocal microscope. This optical sectioning is achieved by the phenomenon of supercritical angle fluorescence, wherein only a fluorophore next to the interface of a refractive index discontinuity can emit propagating components of radiation into the so-called forbidden angles. The simplicity of this technique allows it to be integrated with a high numerical aperture confocal scanning microscope by only a simple modification on the detection channel. Confocal-supercritical angular fluorescence microscopy would be a powerful tool to achieve high-resolution surface imaging, especially for membrane imaging in biological samples.


Assuntos
Membrana Celular/metabolismo , Microscopia Confocal/métodos , Animais , Células CHO , Cricetinae , Cricetulus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...