Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38528220

RESUMO

Emerging contaminants are diverse ecotoxic materials requiring unique treatment for removal. Asphaltenes are environmentally hazardous carbon-rich solid waste product of the petroleum industry. In the current work, asphaltene-derived activated carbon (AC) was loaded with silver (Ag/AC) and used to remove amoxicillin (AMX) and tetracycline (TC) from aqueous phase. The prepared Ag/AC was characterised using FESEM, FTIR, XRD and surface area analysis. The FESEM micrographs confirmed the spherical silver nanoparticle-laden porous AC, and the BET surface area was found to be 213 m2/g. Batch adsorption studies were performed, and the equilibrium data were fit into adsorption isotherm and kinetic models. The Ag/AC exhibited superior monolayer adsorption capacity of 1012 mg/g and 770 mg/g for AMX and TC, respectively. The continuous column studies were also performed to evaluate the breakthrough parameters. Furthermore, the antimicrobial activity of the adsorbent was evaluated using zone of inhibition studies. Ag/AC was found to have an 8-mm-diameter zone of microbial inhibition. The obtained results showed that Ag/AC was a promising material for the removal of antibiotics and inhibition of resistance-developed mutated microbes in effluent water.

2.
Environ Sci Pollut Res Int ; 31(3): 4747-4763, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38105325

RESUMO

Semiconductor photocatalysis is the most efficient advanced oxidation processes for wastewater treatment. A new carbon-based photocatalyst bismuth oxide/multi-walled carbon nanotube (Bi2O3/MWCNT) nanocomposite has a considerable impact on improving photocatalytic performance. Bi2O3/MWCNTs (BMC) nanocomposite was prepared through the hydrothermal processing with 2.5, 5, 7.5 and 10 wt% of MWCNTs. The prepared photocatalysts have been thoroughly examined by various techniques. The X-ray diffraction confirmed the prepared photocatalyst as α-Bi2O3 with high crystallinity. The band gap of Bi2O3 and BMC 7.5 nanocomposite was found to be 2.41 and 1.94 eV. The prepared photocatalyst revealed smooth and porous merged flower-like structure with respect to the addition of MWCNTs. The model pollutant chromium(VI) (Cr(VI)) has been used to check the reduction efficiency of the prepared photocatalyst under solar irradiation. It was found that BMC 7.5 nanocomposite showed enhanced photocatalytic metal ion reduction (87.48%) compared to pristine Bi2O3 (69.29%). The preliminary photocatalytic Cr(VI) ion reduction experiments were carried to determine the photoreduction efficiency of pristine bismuth oxide and bismuth MWCNT nanocomposite. The kinetic study on Cr(VI) ion reduction obeyed pseudo-first-order rate kinetics for both the prepared photocatalysts. The efficiency of the photocatalysts was further analysed by reusing the same up to 3 cycles without loss of the efficacy.


Assuntos
Nanocompostos , Nanotubos de Carbono , Luz , Bismuto/química , Nanotubos de Carbono/química , Cromo/química , Catálise
3.
Environ Sci Pollut Res Int ; 30(18): 52561-52575, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36829094

RESUMO

Developing and implementing visible light active organic-inorganic hybrid semiconductor nanomaterials with enhanced photocatalytic properties find newer environmental and energy treatment capabilities. Here, we are reporting polymeric g-C3N4 layers coated with different propositions of erbium oxide nanoparticles, characterized using XPS, UV-Vis-DRS, FT-IR, HR-TEM, FE-SEM, elemental mapping, XRD and surface area techniques and its photocatalytic activities were evaluated under visible light irradiations. The hybrid nanocomposite materials possess better crystalline nature and erbium oxide particles were on the surface of polymeric g-C3N4. The surface area and bandgap energy of the polymeric g-C3N4-erbium oxide (5 wt%) nanohybrid composite were 99.9 m2/g and 2.52 eV. The photocatalytic activities as prepared nanohybrid composites were assessed for the oxidation of orange G dye molecules in the presence of visible light and were highly active in a broader range of pH with the presence of various inorganic anions. The rate of photocatalytic oxidation of dye molecules varied from 4.79 × 10-4 to 1.77 × 10-4 min-1 for the initial concentration of 5 to 20 ppm and retained its activities above 95% up to three cycles of reusability. Hence, the organic-inorganic novel catalytic nanohybrid composite may find more comprehensive applications in the area of environmental and energy applications.


Assuntos
Luz , Óxidos , Espectroscopia de Infravermelho com Transformada de Fourier
4.
J Fluoresc ; 32(4): 1347-1356, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35366164

RESUMO

Herein we report a simple, single-step, cost-effective, environmentally friendly, and biocompatible approach using sodium salt of N-cholyl-L-cysteine (NaCysC) capped gold nanoclusters (AuNCs) with green emission properties at above the CMC in aqueous medium under UV-light irradiation. The primary and secondary CMC of NaCysC was found to be 4.6 and 10.7 mM respectively using pyrene as fluorescent probe. The synthesized AuNCs exhibit strong emission maxima at 520 nm upon excitation at 375 nm with a large Stokes shift of 145 nm. The surface functionality and morphology of NCs are studied by fourier transform infrared spectroscopy, dymanic light scattering studies and transmission electron microscopy. The formation of AuNCs was completed within 5 h and exhibit high stability for more than 6 months. The NaCysC templated AuNCs selectively quenches the Hg2+ ions with higher sensitivity in aqueous solution over the other metal ions. The fluorescence analysis of Hg2+ showed a wide linear range from 15 to 120 µM and a detection limit was found to be 15 nM.


Assuntos
Mercúrio , Nanopartículas Metálicas , Cisteína/análise , Corantes Fluorescentes/química , Ouro/química , Íons , Mercúrio/análise , Nanopartículas Metálicas/química , Espectrometria de Fluorescência/métodos
5.
Nanomaterials (Basel) ; 13(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36616076

RESUMO

To study their physicochemical and antimicrobial properties, zinc oxide nanoparticles were synthesized using a simple chemical route and 4-dimethylaminobenzaldehyde (4DB) as an organic additive. ZnO nanoparticles were characterized with XRD analysis, which confirmed the presence of a hexagonal wurtzite structure with different crystalline sizes. The SEM morphology of the synthesized nanoparticles confirmed the presence of nanorods in both modifications of ZnO nanoparticles. EDS analysis proved the chemical composition of the synthesized samples via different chemical approaches. In addition, the optical absorption results indicated that the use of 4DB increased the band gap energy of the synthesized nanoparticles. The synthesized Zn8O8 and Zn8O8:4DB clusters were subjected to HOMO-LUMO analysis, and their ionization energy (I), electron affinity (A), global hardness (η), chemical potential (σ), global electrophilicity index (ω), dipole moment (µ), polarizability (αtot), first-order hyperpolarizability (ßtot), and other thermodynamic properties were determined. Furthermore, the antimicrobial properties of the ZnO nanoparticles were studied against G+ (S. aureus and B. subtilis) and G- (K. pneumoniae and E. coli) bacteria in a nutrient agar according to guidelines of the Clinical and Laboratory Standards Institute (CLSI).

6.
Sci Rep ; 11(1): 9918, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972653

RESUMO

In this study, a novel nanohybrid composite containing nitrogen-doped multiwalled carbon nanotubes/carboxymethylcellulose (N-MWCNT/CMC) was synthesized for supercapacitor applications. The synthesized composite materials were subjected to an ultrasonication-mediated solvothermal hydrothermal reaction. The synthesized nanohybrid composite electrode material was characterized using analytical methods to confirm its structure and morphology. The electrochemical properties of the composite electrode were investigated using cyclic voltammetry (CV), galvanic charge-discharge, and electrochemical impedance spectroscopy (EIS) using a 3 M KOH electrolyte. The fabricated composite material exhibited unique electrochemical properties by delivering a maximum specific capacitance of approximately 274 F g-1 at a current density of 2 A g-1. The composite electrode displayed high cycling stability of 96% after 4000 cycles at 2 A g-1, indicating that it is favorable for supercapacitor applications.

7.
Colloids Surf B Biointerfaces ; 205: 111840, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33992823

RESUMO

Hexagonal nanostructured cobalt oxide @ N-doped MWCNT /polypyyrole (Co3O4/PPy@N-MWCNT) composite was produced by an ultrasonication-mediated solvothermal method for electrochemical supercapacitor and glucose sensor applications. The structural and electrochemical properties of the Co3O4/PPy@N-MWCNT were confirmed by various spectroscopic and microscopic techniques. The as-prepared electrode showed an excellent capacitance of ∼872 F/g at 0.5 A/g with a capacitance retention of 96.8 %, even after 10,000 cycles. In addition, analysis of the sensing activity of the composite materials towards the glucose detection showed excellent electrochemical sensing performance that includes the glucose linear limit of (10 to 0.15) µm, detection sensitivity of 195.72 µA/cm2/mM, and lower detection value of S = 0.07327 µA/cm2 @ R2 = 0.99. The as-prepared composite material can be a promising candidate for the electrochemical supercapacitor and the efficient sensing of glucose.


Assuntos
Nanotubos de Carbono , Cobalto , Glucose , Nitrogênio , Óxidos
8.
Sci Rep ; 9(1): 12622, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477759

RESUMO

The porous materials of SnO2@NGO composite was synthesized by thermal reduction process at 550 °C in presence ammonia and urea as catalyst. In this process, the higher electrostatic attraction between the SnO2@NGO nanoparticles were anchored via thermal reduction reaction. These synthesized SnO2@ NGO composites were confirmed by Raman, XRD, XPS, HR-TEM, and EDX results. The SnO2 nanoparticles were anchored in the NGO composite in the controlled nanometer scale proved by FE-TEM and BET analysis. The SnO2@NGO composite was used to study the electrochemical properties of CV, GCD, and EIS analysis for supercapacitor application. The electrochemical properties of SnO2@NGO exhibited the specific capacitance (~378 F/g at a current density of 4 A/g) and increasing the cycle stability up to 5000 cycles. Therefore, the electrochemical results of SnO2@NGO composite could be promising for high-performance supercapacitor applications.

9.
J Craniofac Surg ; 30(1): 265-269, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30339597

RESUMO

Currently there is an increased demand for synthetic bone substitute materials (SBSMs) due to avoidance of donor-site surgery and morbidity. Attempts are done to create SBSM mimicking the bone microarchitecture for enhanced healing. In this study, the authors nanoengineered polycaprolactone (PCL) and nanohydroxyapatite (nHAp) composite scaffold by electrospinning. The nHAp is synthesized via hydrothermal process followed by microwave irradiation. In vitro biocompatibility evaluation with MG63 osteoblastic cell line showed enhanced cell proliferation in the PCL-nHAp scaffold than plain PCL by MTT assay and fluorescence microscopy. Increased osteogenesis in the PCL-nHAp scaffold was shown by the increased calcium load, alkaline phosphatase activity, and expression of osteogenic biomarkers namely osteocalcin, osteonectin, and osteopontin. In vivo studies conducted in rabbit femur bone defects showed increased bone regeneration in PCL-nHAp implanted defects. The results show that PCL-nHAp electrospun scaffold is biomimetic and highly osteogenic and thus a potential SBSM for critical size craniomaxillofacial bone defect applications.


Assuntos
Regeneração Óssea/fisiologia , Osso e Ossos/metabolismo , Durapatita , Maxila/cirurgia , Poliésteres , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Substitutos Ósseos , Células Cultivadas , Humanos , Maxila/ultraestrutura , Microscopia Eletrônica de Varredura , Modelos Animais , Osteocalcina/metabolismo , Coelhos
10.
Nanoscale Res Lett ; 7(1): 350, 2012 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-22738226

RESUMO

Maleimide-functionalized polystyrene (PSMA-SiO2/TiO2) hybrid nanocomposites were prepared by sol-gel reaction starting from tratraethoxysilane (TEOS) and titanium isopropoxide in the solution of polystyrene maleimide in 1,4-dioxane. The hybrid films were obtained by the hydrolysis and polycondensation of TEOS and titanium isopropoxide in maleimide-functionalized polystyrene solution followed by the Michael addition reaction. The transparency of polymer (PSMA-SiO2/TiO2) hybrid was prepared from polystyrene titanium isopropoxide using the γ-aminopropyltriethoxy silane as crosslinking agent by in situ sol-gel process via covalent bonding between the organic-inorganic hybrid nanocomposites. The maleimide-functionalized polystyrene was synthesized by Friedel-Crafts reaction from N-choloromethyl maleimide. The FTIR spectroscopy data conformed the occurrence of Michael addition reaction between the pendant maleimide moieties of the styrene and γ-aminopropyltriethoxysilane. The chemical structure and morphology of PSMA-SiO2/TiO2 hybrid nanocomposites were characterized by FTIR, nuclear magnetic resonance (NMR), 13 C NMR, SEM, XRD, and TEM analyses. The results also indicate that the inorganic particles are much smaller in the ternary systems than in the binary systems; the shape of the inorganic particles and compatibility for maleimide-functionalized polystrene and inorganic moieties are varied with the ratio of the inorganic moieties in the hybrids. Furthermore, TGA and DSC results indicate that the thermal stability of maleimide-functionalized polystyrene was enhanced through the incorporation of the inorganic moieties in the hybrid materials.

11.
Curr Microbiol ; 62(2): 351-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20644933

RESUMO

Biosorption is an eco-friendly and cost-effective method for treating the dye house effluents. Aspergillus niger and Trichoderma sp. were cultivated in bulk and biomasses used as biosorbents for the biosorption of an azo dye Orange G. Batch biosorption studies were performed for the removal of Orange G from aqueous solutions by varying the parameters like initial aqueous phase pH, biomass dosage, and initial dye concentration. It was found that the maximum biosorption was occurred at pH 2. Experimental data were analyzed by model equations such as Langmuir and Freundlich isotherms, and it was found that both the isotherm models best fitted the adsorption data. The monolayer saturation capacity was 0.48 mg/g for Aspergillus niger and 0.45 mg/g for Trichoderma sp. biomasses. The biosorption kinetic data were tested with pseudo first-order and pseudo second-order rate equations, and it was found that the pseudo second-order model fitted the data well for both the biomasses. The rate constant for the pseudo second-order model was found to be 10-0.8 (g/mg min⁻¹) for Aspergillus niger and 8-0.4 (g/mg min⁻¹) for Trichoderma sp. by varying the initial dye concentrations from 5 to 25 mg/l. It was found that the biomass obtained from Aspergillus niger was a better biosorbent for the biosorption of Orange G dye when compared to Trichoderma sp.


Assuntos
Aspergillus niger/metabolismo , Compostos Azo/metabolismo , Corantes/metabolismo , Trichoderma/metabolismo , Aspergillus niger/crescimento & desenvolvimento , Biomassa , Biotransformação , Corantes/química , Concentração de Íons de Hidrogênio , Modelos Teóricos , Trichoderma/crescimento & desenvolvimento
12.
ChemSusChem ; 2(4): 278-300, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19360707

RESUMO

The predicted shortage of fossil fuels and related environmental concerns have recently attracted significant attention to scientific and technological issues concerning the conversion of biomass into fuels. First-generation biodiesel, obtained from vegetable oils and animal fats by transesterification, relies on commercial technology and rich scientific background, though continuous progress in this field offers opportunities for improvement. This review focuses on new catalytic systems for the transesterification of oils to the corresponding ethyl/methyl esters of fatty acids. It also addresses some innovative/emerging technologies for the production of biodiesel, such as the catalytic hydrocracking of vegetable oils to hydrocarbons. The special role of the catalyst as a key to efficient technology is outlined, together with the other important factors that affect the yield and quality of the product, including feedstock-related properties and various system conditions.


Assuntos
Fontes de Energia Bioelétrica , Óleos de Plantas/química , Animais , Catálise , Ésteres/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...