Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 55(7): 3351-63, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26967379

RESUMO

The noncovalent intermolecular interactions (π-π stacking, metallophilic bonding) of the cyclometalated complexes [Pt(NCN)L](+)X(-) (NCN = dipyridylbenzene, L = pyridine (1), acetonitrile (2)) are determined by the steric properties of the ancillary ligands L in the solid state and in solution, while the nature of the counterion X(-) (X(-) = PF6(-), ClO4(-), CF3SO3(-)) affects the molecular arrangement of 2·X in the crystal medium. According to the variable-temperature X-ray diffraction measurements, the extensive Pt···Pt interactions and π-stacking in 2·X are significantly temperature-dependent. The variable concentration (1)H and diffusion coefficients NMR measurements reveal that 2·X exists in the monomeric form in dilute solutions at 298 K, while upon increase in concentration [Pt(NCN)(NCMe)](+) cations undergo the formation of the ground-state oligomeric aggregates with an average aggregation number of ∼3. The photoluminescent characteristics of 1 and 2·X are largely determined by the intermolecular aggregation. For the discrete molecules the emission properties are assigned to metal perturbed IL charge transfer mixed with some MLCT contribution. In the case of oligomers 2·X the luminescence is significantly red-shifted with respect to 1 and originates mainly from the (3)MMLCT excited states. The emission energies depend on the structural arrangement in the crystal and on the complex concentration in solution, variation of which allows for the modulation of the emission color from greenish to deep red. In the solid state the lability of the ligands L leads to vapor-induced reversible transformation 1 ↔ 2 that is accompanied by the molecular reorganization and, consequently, dramatic change of the photophysical properties. Time-dependent density functional theory calculations adequately support the models proposed for the rationalization of the experimental observations.

2.
Angew Chem Int Ed Engl ; 54(47): 14057-60, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26403269

RESUMO

The cocrystallization of a weakly luminescent platinum complex [Pt(btpy)(PPh3)Cl](1) (Hbtpy=2-(2benzothienyl)pyridine; emission quantum yield Φem=0.03) with fluorinated bromo- and iodoarenes C6F6-nXn (X=Br, I; n=1, 2) results in the formation of efficient halogen-bonding (XB) interactions Pt-Cl⋅⋅⋅X-R. An up to 22-fold enhancement (Φem =0.65) in the luminescence intensity of the cocrystallized compound is detected, without a substantial change of the emission energy. Based on crystallographic, photophysical, and theoretical investigations, the contribution of the XB donors C6F6-n Xn to the amplification of luminescence intensity is attributed to the enhancement of spin-orbit coupling through the heavy-atom effect, and simultaneously to the suppression of the nonradiative relaxation pathways by increasing the rigidity of the chromophore center.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...