Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38730944

RESUMO

This study aimed to investigate the fabrication and characterization of hexagonal titanium dioxide nanotubes (hTNTs) compared to compact TiO2 layers, focusing on their structural, electrochemical, corrosion, and mechanical properties. The fabrication process involved the sonoelectrochemical anodization of titanium foil in various electrolytes to obtain titanium oxide layers with different morphologies. Scanning electron microscopy revealed the formation of well-ordered hexagonal TNTs with diagonals in the range of 30-95 nm and heights in the range of 3500-4000 nm (35,000-40,000 Å). The electrochemical measurements performed in 3.5% NaCl and Ringer's solution confirmed a more positive open-circuit potential, a lower impedance, a higher electrical conductivity, and a higher corrosion rate of hTNTs compared to the compact TiO2. The data revealed a major drop in the impedance modulus of hTNTs, with a diagonal of 46 ± 8 nm by 97% in 3.5% NaCl and 96% in Ringer's solution compared to the compact TiO2. Nanoindentation tests revealed that the mechanical properties of the hTNTs were influenced by their diagonal size, with decreasing hardness and Young's modulus observed with an increasing diagonal size of the hTNTs, accompanied by increased plastic deformation. Overall, these findings suggest that hTNTs exhibit promising structural and electrochemical properties, making them potential candidates for various applications, including biosensor platforms.

2.
Materials (Basel) ; 15(12)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35744391

RESUMO

The paper presents the results of the preparation of bulk and porous Ti-Ta-Ag alloys. The first step of this study was the preparation of the powder alloys using mechanical alloying (MA). The second was hot-pressing consolidation and sintering with a space holder, which resulted in high-density and high-porosity (approximately 70%) samples, respectively. Porosity, morphology, mechanical properties, biocompatibility, and antibacterial behavior were investigated and related to the preparation procedures. The authors found that Ta and Ag heavily influence the microstructure and determine other biomaterial-related properties. These new materials showed positive behavior in the MTT assay, and antibacterial properties. Such materials could find applications in the production of hard tissue implants.

3.
Materials (Basel) ; 15(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35329580

RESUMO

The paper presents results of preparation and modification of Ti20Nb5Zr foams by a thermal dealloying method followed by electrochemical modification. The first step of this study was the preparation of Ti20Nb5Zr30Mg nanopowder using mechanical alloying (MA). The second was forming green compacts by cold pressing and then sintering with magnesium dealloyed from the structure, which resulted in pores formation. The next step was surface modification by electrochemical etching and silver nanoparticle deposition. Porosity, morphology, mechanical properties as well as biocompatibility and antibacterial behavior were investigated. Titanium foam porosity up to approximately 60% and wide pore size distribution were successfully prepared. The new materials have shown positive behavior in the MTT assay as well as antibacterial properties. These results confirmed great potential for thermal dealloying in preparation of porous structures.

4.
Materials (Basel) ; 14(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466287

RESUMO

The focus of this paper is on examining the mechanical behavior of spark plasma sintered WC-Co based composites doped with Cr3C2, TaC-NbC, TiC, and VC, as well as defining some parameters characterizing deformation and fracture processes during hardness measurement. The calculated microhardness of WC-Co cemented carbides for all the studied compositions is found to be higher than the results obtained during hardness testing. Therefore, the ratio of the experimental and calculated values of microhardness is shown to be an approximate indication of WC-Co cemented carbide sensitivity to damage processes during indentation. Some parameters characterizing the microstructure-microhardness relationship are defined, and the nanomechanical properties of WC-Co cemented carbide phases are examined in order to separate the deformation and fracture processes during the indentation process. Strain gradient linear function parameters are calculated for 10-cycle nanoindentation. It was found that the nanoindentation curve after 10 cycles shows anomalous behavior of the WC grains, which indicates their fracture processes.

5.
Materials (Basel) ; 12(8)2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31003467

RESUMO

Combining high energy ball milling and spark plasma sintering is one of the most promising technologies in materials science. The mechanical alloying process enables the production of nanostructured composite powders that can be successfully spark plasma sintered in a very short time, while preserving the nanostructure and enhancing the mechanical properties of the composite. Composites with MAX phases are among the most promising materials. In this study, Ti/SiC composite powder was produced by high energy ball milling and then consolidated by spark plasma sintering. During both processes, Ti3SiC2, TiC and Ti5Si3 phases were formed. Scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction study showed that the phase composition of the spark plasma sintered composites consists mainly of Ti3SiC2 and a mixture of TiC and Ti5Si3 phases which have a different indentation size effect. The influence of the sintering temperature on the Ti-SiC composite structure and properties is defined. The effect of the Ti3SiC2 MAX phase grain growth was found at a sintering temperature of 1400-1450 °C. The indentation size effect at the nanoscale for Ti3SiC2, TiC+Ti5Si3 and SiC-Ti phases is analyzed on the basis of the strain gradient plasticity theory and the equation constants were defined.

6.
Materials (Basel) ; 11(12)2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30551600

RESUMO

The paper presents the results of titanium plasma spraying (TPS) on polymer substrates. Polyethylene (PE300), polyamide PA6, and fiber glass-reinforced polyamide (PA6.6-GF30) were used as substrates. The PE300 and PA6.6-GF30 substrates exhibited appropriate behavior during the TPS process, whereas the PA6 substrate did not "accept" Ti during plasma spraying, and the coating did not form. The TPS coatings exhibited low porosity and high homogeneity, and they had a typical multilayer structure composed of Ti and its oxides. The nanoindentation test showed good mechanical properties of the coatings and demonstrated a hardness and a Young's modulus of approximately 400 HV and 200 GPa, respectively. The bending test confirmed the good adhesion of the titanium coatings to the polymer substrates. The Ti coatings did not fall off the substrate after its significant bending deformation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...