Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(4): 4497-4512, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38313545

RESUMO

Coconut oil, a low-molecular-weight vegetable oil, is virtually unutilized as a polyol material for flexible polyurethane foam (FPUF) production due to the high-molecular-weight polyol requirement of FPUFs. The saturated chemistry of coconut oil also limits its compatibility with widely used polyol-forming processes, which mostly rely on the unsaturation of vegetable oil for functionalization. Existing studies have only exploited this resource in producing low-molecular-weight polyols for rigid foam synthesis. In this present work, high-molecular-weight polyester polyols were synthesized from coconut monoglycerides (CMG), a coproduct of fatty acid production from coconut oil, via polycondensation at different mass ratios of CMG with 1:5 glycerol:phthalic anhydride. Characterization of the CMG-based polyol (CMGPOL) products showed number-average molecular weights between 1997 and 4275 g/mol, OH numbers between 77 and 142 mg KOH/g, average functionality between 4.8 and 5.8, acid numbers between 4.49 and 23.56 mg KOH/g, and viscosities between 1.27 and 89.57 Pa·s. The polyols were used to synthesize the CMGPOL-modified PU foams (CPFs) at 20 wt % loading. The modification of the foam formulation increased the monodentate and bidentate urea groups, shown using Fourier transform infrared (FTIR) spectroscopy, that promoted microphase separation in the foam matrix, confirmed using atomic force microscopy (AFM) and differential scanning calorimetry (DSC). The implications of the structural change to foam morphology and open cell content were investigated using a scanning electron microscope (SEM) and gas pycnometer. The density of the CPFs decreased, while a significant improvement in their tensile and compressive properties was observed. Also, the CPFs exhibited different resiliency with a correlation to microphase separation. These findings offer a new sustainable polyol raw material that can be used to modify petroleum-based foam and produce flexible foams with varying properties that can be tailored to meet specific requirements.

2.
Materials (Basel) ; 16(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37570156

RESUMO

This study propounds a sustainable alternative to petroleum-based polyurethane (PU) foams, aiming to curtail this nonrenewable resource's continued and uncontrolled use. Coconut fatty acid distillate (CFAD) and crude glycerol (CG), both wastes generated from vegetable oil processes, were utilized for bio-based polyol production for rigid PU foam application. The raw materials were subjected to catalyzed glycerolysis with alkaline-alcohol neutralization and bleaching. The resulting polyol possessed properties suitable for rigid foam application, with an average OH number of 215 mg KOH/g, an acid number of 7.2983 mg KOH/g, and a Gardner color value of 18. The polyol was used to prepare rigid PU foam, and its properties were determined using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis/derivative thermogravimetric (TGA/DTA), and universal testing machine (UTM). Additionally, the cell foam morphology was investigated by scanning electron microscope (SEM), in which most of its structure revealed an open-celled network and quantified at 92.71% open-cell content using pycnometric testing. The PU foam thermal and mechanical analyses results showed an average compressive strength of 210.43 kPa, a thermal conductivity of 32.10 mW·m-1K-1, and a density of 44.65 kg·m-3. These properties showed its applicability as a type I structural sandwich panel core material, thus demonstrating the potential use of CFAD and CG in commercial polyol and PU foam production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA