Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Stem Cells ; 11(1): 121-130, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29843194

RESUMO

BACKGROUND AND OBJECTIVE: The potency of tissue resident stem cells is regulated primarily by inputs from the local microenvironment. Isolation of stem cells through enzymatic digestion of tissue may affect epigenetic regulation of cell fate and performance. Here we employ a non-enzymatic method to harvest and investigate tissue resident stem cells from the adult porcine pulmonary valve. METHODS AND RESULTS: The presence of c-Kit⁺ stem cells within the valve tissue was confirmed by immunohistochemistry. An in vitro culture of minced valve leaflets was developed under the standard conditions (37°C with 5% CO2). The viability of the cellular outgrowths was evaluated over the subsequent 12 weeks. Under this culture condition, we identified a population of non-adherent c-Kit⁺ cells and multiple cellular structures mimicking the phenotype of embryonic stem cells at different stages of development. Formation of multinucleated cells through cell fusion provided an active niche area for homing and interaction of the non-adherent c-Kit⁺ cells. Expression of pluripotency markers Oct-4 and Nanog was detected in the newly formed multinucleated cells but not in mature colonies. Partial cell fusion was shown by fluorescent live-cell tracking, which confirmed intercellular molecular exchange between donor and recipient cells, resulting in altered cytoplasmic protein expression by the recipient cell. CONCLUSIONS: These results suggest a role for the microenvironment in decrypting the potential of the valve somatic stem cells in vitro. In addition, our data provide evidence for cell fusion, which may play a critical role in reversing somatic cell fate and spontaneous cellular reprogramming.

2.
Pediatr Res ; 76(4): 341-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25000348

RESUMO

BACKGROUND: Tetralogy of Fallot patients with pulmonary atresia (TOF/PA) present a pulmonary blood supply directly from aortic collateral arteries. Major aorto-pulmonary collateral arteries (MAPCAs) present substantial clinical and surgical management challenges. Surgical operations to reestablish and promote further development of a pulmonary arterial connection preferentially utilize MAPCAs for reconstruction of central pulmonary arteries. However, the propensity of some MAPCAs to develop stenosis rather than growth may impair the response to reconstructions. METHODS: Probe sets prepared from MAPCAs, PA, and aorta mRNA were used to interrogate human genome microarrays. We compared expression differences between pairs of the three vessels to determine whether MAPCAs display distinct expression patterns. RESULTS: Functional clustering analysis identified differences in gene expression, which were further analyzed by gene ontology classification. A subset of highly regulated genes was validated using quantitative PCR. Expression differences among vessel types were observed for multiple gene classes. Of note, we observed that MAPCAs differentially express several genes at much higher levels than either PA or aorta. CONCLUSION: MAPCAs differ from PA or aorta by significantly altered levels in gene expression, suggesting a transcriptional basis for their physiology that will guide a further understanding of the pathobiology of MAPCAs and TOF.


Assuntos
Aorta/metabolismo , Circulação Colateral , Artéria Pulmonar/metabolismo , Tetralogia de Fallot/genética , Transcriptoma , Análise por Conglomerados , Perfilação da Expressão Gênica , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Tetralogia de Fallot/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...