Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 36(15): 7514-7524, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39156715

RESUMO

Operando characterization can reveal degradation processes in battery materials and are essential for the development of battery chemistries. This study reports the first use of quasi-simultaneous operando pair distribution function (PDF) and X-ray absorption spectroscopy (XAS) of a battery cell, providing a detailed, atomic-level understanding of the cycling mechanism of Bi2MoO6 as an anode material for Na-ion batteries. This material cycles via a combined conversion-alloying reaction, where electrochemically active, nanocrystalline Na x Bi particles embedded in an amorphous Na-Mo-O matrix are formed during the first sodiation. The combination of operando PDF and XAS revealed that Bi obtains a positive oxidation state at the end of desodiation, due to formation of Bi-O bonds at the interface between the Bi particles and the Na-Mo-O matrix. In addition, XAS confirmed that Mo has an average oxidation state of +6 throughout the (de)sodiation process and, thus, does not contribute to the capacity. However, the local environment of Mo6+ changes from tetrahedral coordination in the desodiated state to distorted octahedral in the sodiated state. These structural changes are linked to the poor cycling stability of Bi2MoO6, as flexibility of this matrix allows movement and coalescence of the Na x Bi particles, which is detrimental to the electrochemical stability.

2.
ACS Appl Mater Interfaces ; 16(10): 12428-12436, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38412363

RESUMO

Development of new anode materials for Na-ion batteries strongly depends on a detailed understanding of their cycling mechanism. Due to instrumental limitations, the majority of mechanistic studies focus on operando materials' characterization at low cycling rates. In this work, we evaluate and compare the (de)sodiation mechanisms of BiFeO3 in Na-ion batteries at different current densities using operando X-ray diffraction (XRD) and ex situ X-ray absorption spectroscopy (XAS). BiFeO3 is a conversion-alloying anode material with a high initial sodiation capacity of ∼600 mAh g-1, when cycled at 0.1 A g-1. It does not change its performance or cycling mechanism, except for minor losses in capacity, when the current density is increased to 1 A g-1. In addition, operando XRD characterization carried out over multiple cycles shows that the Bi ⇋ NaBi (de)alloying reaction and the oxidation of Bi at the interface with the Na-Fe-O matrix are detrimental for cycling stability. The isolated NaBi ⇋ Na3Bi reaction is less damaging to the cycling stability of the material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA