Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Biochim Biophys Acta Bioenerg ; 1863(7): 148583, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35671795

RESUMO

The superoxide anion - molecular oxygen reduced by a single electron - is produced in large amounts by enzymatic and adventitious reactions. It can perform a range of cellular functions, including bacterial warfare and iron uptake, signalling and host immune response in eukaryotes. However, it also serves as precursor for more deleterious species such as the hydroxyl anion or peroxynitrite and defense mechanisms to neutralize superoxide are important for cellular health. In addition to the soluble proteins superoxide dismutase and superoxide reductase, recently the membrane embedded diheme cytochrome b561 (CybB) from E. coli has been proposed to act as a superoxide:quinone oxidoreductase. Here, we confirm superoxide and cellular ubiquinones or menaquinones as natural substrates and show that quinone binding to the enzyme accelerates the reaction with superoxide. The reactivity of the substrates is in accordance with the here determined midpoint potentials of the two b hemes (+48 and -23 mV / NHE). Our data suggest that the enzyme can work near the diffusion limit in the forward direction and can also catalyse the reverse reaction efficiently under physiological conditions. The data is discussed in the context of described cytochrome b561 proteins and potential physiological roles of CybB.


Assuntos
Citocromos b , Superóxidos , Bactérias/metabolismo , Escherichia coli , Oxirredutases , Superóxidos/metabolismo
2.
Structure ; 30(3): 338-349.e3, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34910901

RESUMO

Corynebacterium glutamicum is a preferentially aerobic gram-positive bacterium belonging to the phylum Actinobacteria, which also includes the pathogen Mycobacterium tuberculosis. In these bacteria, respiratory complexes III and IV form a CIII2CIV2 supercomplex that catalyzes oxidation of menaquinol and reduction of dioxygen to water. We isolated the C. glutamicum supercomplex and used cryo-EM to determine its structure at 2.9 Å resolution. The structure shows a central CIII2 dimer flanked by a CIV on two sides. A menaquinone is bound in each of the QN and QP sites in each CIII and an additional menaquinone is positioned ∼14 Å from heme bL. A di-heme cyt. cc subunit electronically connects each CIII with an adjacent CIV, with the Rieske iron-sulfur protein positioned with the iron near heme bL. Multiple subunits interact to form a convoluted sub-structure at the cytoplasmic side of the supercomplex, which defines a path for proton transfer into CIV.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Heme , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/química , Membranas Mitocondriais/metabolismo , Oxirredução , Vitamina K 2/metabolismo
3.
Nat Struct Mol Biol ; 25(12): 1128-1136, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30518849

RESUMO

In the mycobacterial electron-transport chain, respiratory complex III passes electrons from menaquinol to complex IV, which in turn reduces oxygen, the terminal acceptor. Electron transfer is coupled to transmembrane proton translocation, thus establishing the electrochemical proton gradient that drives ATP synthesis. We isolated, biochemically characterized, and determined the structure of the obligate III2IV2 supercomplex from Mycobacterium smegmatis, a model for Mycobacterium tuberculosis. The supercomplex has quinol:O2 oxidoreductase activity without exogenous cytochrome c and includes a superoxide dismutase subunit that may detoxify reactive oxygen species produced during respiration. We found menaquinone bound in both the Qo and Qi sites of complex III. The complex III-intrinsic diheme cytochrome cc subunit, which functionally replaces both cytochrome c1 and soluble cytochrome c in canonical electron-transport chains, displays two conformations: one in which it provides a direct electronic link to complex IV and another in which it serves as an electrical switch interrupting the connection.


Assuntos
Respiração Celular/fisiologia , Complexo de Proteínas da Cadeia de Transporte de Elétrons/fisiologia , Complexo III da Cadeia de Transporte de Elétrons/fisiologia , Modelos Moleculares , Mycobacterium smegmatis/metabolismo , Microscopia Crioeletrônica , Transporte de Elétrons , Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/química , Mycobacterium smegmatis/citologia , Oxirredução , Oxigênio , Estrutura Terciária de Proteína
4.
Nat Chem Biol ; 14(8): 788-793, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29915379

RESUMO

Superoxide is a reactive oxygen species produced during aerobic metabolism in mitochondria and prokaryotes. It causes damage to lipids, proteins and DNA and is implicated in cancer, cardiovascular disease, neurodegenerative disorders and aging. As protection, cells express soluble superoxide dismutases, disproportionating superoxide to oxygen and hydrogen peroxide. Here, we describe a membrane-bound enzyme that directly oxidizes superoxide and funnels the sequestered electrons to ubiquinone in a diffusion-limited reaction. Experiments in proteoliposomes and inverted membranes show that the protein is capable of efficiently quenching superoxide generated at the membrane in vitro. The 2.0 Å crystal structure shows an integral membrane di-heme cytochrome b poised for electron transfer from the P-side and proton uptake from the N-side. This suggests that the reaction is electrogenic and contributes to the membrane potential while also conserving energy by reducing the quinone pool. Based on this enzymatic activity, we propose that the enzyme family be denoted superoxide oxidase (SOO).


Assuntos
Membrana Celular/enzimologia , Citocromos b/metabolismo , Escherichia coli/enzimologia , Sequestradores de Radicais Livres/metabolismo , Superóxidos/metabolismo , Citocromos b/química , Citocromos b/genética , Escherichia coli/metabolismo , Modelos Moleculares , Conformação Proteica
5.
Proc Natl Acad Sci U S A ; 115(12): 3048-3053, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507228

RESUMO

The Saccharomyces cerevisiae respiratory supercomplex factor 1 (Rcf1) protein is located in the mitochondrial inner membrane where it is involved in formation of supercomplexes composed of respiratory complexes III and IV. We report the solution structure of Rcf1, which forms a dimer in dodecylphosphocholine (DPC) micelles, where each monomer consists of a bundle of five transmembrane (TM) helices and a short flexible soluble helix (SH). Three TM helices are unusually charged and provide the dimerization interface consisting of 10 putative salt bridges, defining a "charge zipper" motif. The dimer structure is supported by molecular dynamics (MD) simulations in DPC, although the simulations show a more dynamic dimer interface than the NMR data. Furthermore, CD and NMR data indicate that Rcf1 undergoes a structural change when reconstituted in liposomes, which is supported by MD data, suggesting that the dimer structure is unstable in a planar membrane environment. Collectively, these data indicate a dynamic monomer-dimer equilibrium. Furthermore, the Rcf1 dimer interacts with cytochrome c, suggesting a role as an electron-transfer bridge between complexes III and IV. The Rcf1 structure will help in understanding its functional roles at a molecular level.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Simulação por Computador , Citocromos c/química , Citocromos c/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Escherichia coli/metabolismo , Lipídeos/química , Espectroscopia de Ressonância Magnética , Modelos Químicos , Modelos Moleculares , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Protein Sci ; 26(8): 1653-1666, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28543736

RESUMO

Membrane proteins control a large number of vital biological processes and are often medically important-not least as drug targets. However, membrane proteins are generally more difficult to work with than their globular counterparts, and as a consequence comparatively few high-resolution structures are available. In any membrane protein structure project, a lot of effort is usually spent on obtaining a pure and stable protein preparation. The process commonly involves the expression of several constructs and homologs, followed by extraction in various detergents. This is normally a time-consuming and highly iterative process since only one or a few conditions can be tested at a time. In this article, we describe a rapid screening protocol in a 96-well format that largely mimics standard membrane protein purification procedures, but eliminates the ultracentrifugation and membrane preparation steps. Moreover, we show that the results are robustly translatable to large-scale production of detergent-solubilized protein for structural studies. We have applied this protocol to 60 proteins from an E. coli membrane protein library, in order to find the optimal expression, solubilization and purification conditions for each protein. With guidance from the obtained screening data, we have also performed successful large-scale purifications of several of the proteins. The protocol provides a rapid, low cost solution to one of the major bottlenecks in structural biology, making membrane protein structures attainable even for the small laboratory.


Assuntos
Biologia Computacional/métodos , Proteínas de Escherichia coli/isolamento & purificação , Escherichia coli/química , Ensaios de Triagem em Larga Escala/economia , Proteínas de Membrana/isolamento & purificação , Cromatografia de Afinidade/instrumentação , Cromatografia de Afinidade/métodos , Cromatografia em Gel/instrumentação , Cromatografia em Gel/métodos , Biologia Computacional/economia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/genética , Expressão Gênica , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Biblioteca de Peptídeos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Fatores de Tempo
7.
Biochim Biophys Acta ; 1858(12): 2984-2992, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27620332

RESUMO

We used the amphipathic styrene maleic acid (SMA) co-polymer to extract cytochrome c oxidase (CytcO) in its native lipid environment from S. cerevisiae mitochondria. Native nanodiscs containing one CytcO per disc were purified using affinity chromatography. The longest cross-sections of the native nanodiscs were 11nm×14nm. Based on this size we estimated that each CytcO was surrounded by ~100 phospholipids. The native nanodiscs contained the same major phospholipids as those found in the mitochondrial inner membrane. Even though CytcO forms a supercomplex with cytochrome bc1 in the mitochondrial membrane, cyt. bc1 was not found in the native nanodiscs. Yet, the loosely-bound Respiratory SuperComplex factors were found to associate with the isolated CytcO. The native nanodiscs displayed an O2-reduction activity of ~130 electrons CytcO-1s-1 and the kinetics of the reaction of the fully reduced CytcO with O2 was essentially the same as that observed with CytcO in mitochondrial membranes. The kinetics of CO-ligand binding to the CytcO catalytic site was similar in the native nanodiscs and the mitochondrial membranes. We also found that excess SMA reversibly inhibited the catalytic activity of the mitochondrial CytcO, presumably by interfering with cyt. c binding. These data point to the importance of removing excess SMA after extraction of the membrane protein. Taken together, our data shows the high potential of using SMA-extracted CytcO for functional and structural studies.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/isolamento & purificação , Lipídeos/análise , Saccharomyces cerevisiae/enzimologia , Domínio Catalítico , Complexo IV da Cadeia de Transporte de Elétrons/química , Maleatos/farmacologia , Nanopartículas , Poliestirenos/farmacologia
8.
J Cell Sci ; 124(Pt 16): 2797-805, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21807944

RESUMO

GDNF (glial cell line-derived neurotrophic factor) promotes the differentiation and migration of GABAergic neuronal precursors of the medial ganglionic eminence (MGE). These functions are dependent on the GPI-anchored receptor GFRα1, but independent of its two known transmembrane receptor partners RET and NCAM. Here we show that soluble GFRα1 is also able to promote differentiation and migration of GABAergic MGE neurons. These activities require endogenous production of GDNF. Although GDNF responsiveness is abolished in Gfra1(-/-) neurons, it can be restored upon addition of soluble GFRα1, a result that is only compatible with the existence of a previously unknown transmembrane signaling partner for the GDNF-GFRα1 complex in GABAergic neurons. The roles of two candidate transmembrane receptors previously implicated in GABAergic interneuron development--MET, a receptor for hepatocyte growth factor (HGF), and ErbB4, the neuregulin receptor--were examined. GDNF did not induce the activation of either receptor, nor did inhibition of MET or ErbB4 impair GDNF activity in GABAergic MGE neurons. Unexpectedly, however, inhibition of MET or HGF per se promoted neuronal differentiation and migration and enhanced the activity of GDNF on MGE neurons. These effects were dependent on endogenous GDNF and GFRα1, suggesting that MET signaling negatively regulates GDNF activity in the MGE. In agreement with this, Met mutant MGE neurons showed enhanced responses to GDNF and inhibition of MET or HGF increased Gfra1 mRNA expression in MGE cells. In vivo, expression of MET and GFRα1 overlapped in the MGE, and a loss-of-function mutation in Met increased Gfra1 expression in this region. Together, these observations demonstrate the existence of a novel transmembrane receptor partner for the GDNF-GFRα1 complex and uncover an unexpected interplay between GDNF-GFRα1 and HGF-MET signaling in the early diversification of cortical GABAergic interneuron subtypes.


Assuntos
Neurônios GABAérgicos/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Eminência Mediana/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Animais , Anticorpos Bloqueadores/farmacologia , Células COS , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Chlorocebus aethiops , Receptores ErbB/antagonistas & inibidores , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/patologia , Gânglios/patologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/imunologia , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Indóis/farmacologia , Eminência Mediana/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/genética , Quinazolinas , Receptor ErbB-4 , Transdução de Sinais/genética , Sulfonamidas/farmacologia , Tirfostinas/farmacologia
9.
J Biol Chem ; 283(20): 13792-8, 2008 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-18353777

RESUMO

The neural cell adhesion molecule NCAM binds glial cell line-derived neurotrophic factor (GDNF) through specific determinants located in its third immunoglobulin (Ig) domain. However, high affinity GDNF binding and downstream signaling depend upon NCAM co-expression with the GDNF co-receptor GFRalpha1. GFRalpha1 promotes high affinity GDNF binding to NCAM and down-regulates NCAM-mediated homophilic cell adhesion, but the mechanisms underlying these effects are unknown. NCAM and GFRalpha1 interact at the plasma membrane, but the molecular determinants involved have not been characterized nor is it clear whether their interaction is required for GFRalpha1 regulation of NCAM function. We have investigated the structure-function relationships underlying GFRalpha1 binding to NCAM in intact cells. The fourth Ig domain of NCAM was both necessary and sufficient for the interaction of NCAM with GFRalpha1. Moreover, although the N-terminal domain of GFRalpha1 had previously been shown to be dispensable for GDNF binding, we found that it was both necessary and sufficient for the efficient interaction of this receptor with NCAM. GFRalpha1 lacking its N-terminal domain was still able to potentiate GDNF binding to NCAM and assemble into a tripartite receptor complex but showed a reduced capacity to attenuate NCAM-mediated cell adhesion. On its own, the GFRalpha1 N-terminal domain was sufficient to decrease NCAM-mediated cell adhesion. These results indicate that direct receptor-receptor interactions are not required for high affinity GDNF binding to NCAM but play an important role in the regulation of NCAM-mediated cell adhesion by GFRalpha1.


Assuntos
Regulação da Expressão Gênica , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/química , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Moléculas de Adesão de Célula Nervosa/química , Animais , Células COS , Adesão Celular , Chlorocebus aethiops , Reagentes de Ligações Cruzadas/farmacologia , Glicosilação , Humanos , Modelos Biológicos , Ligação Proteica , Estrutura Terciária de Proteína , Propriedades de Superfície
10.
J Biol Chem ; 282(17): 12734-40, 2007 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-17322291

RESUMO

Most plasma membrane proteins are capable of sensing multiple cell-cell and cell-ligand interactions, but the extent to which this functional versatility is founded on their modular design is less clear. We have identified the third immunoglobulin domain of the Neural Cell Adhesion Molecule (NCAM) as the necessary and sufficient determinant for its interaction with Glial Cell Line-derived Neurotrophic Factor (GDNF). Four charged contacts were identified by molecular modeling as the main contributors to binding energy. Their mutation abolished GDNF binding to NCAM but left intact the ability of NCAM to mediate cell adhesion, indicating that the two functions are genetically separable. The GDNF-NCAM interface allows complex formation with the GDNF family receptor alpha1, shedding light on the molecular architecture of a multicomponent GDNF receptor.


Assuntos
Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Modelos Moleculares , Mutação , Moléculas de Adesão de Célula Nervosa/metabolismo , Animais , Sítios de Ligação , Células COS , Adesão Celular/genética , Chlorocebus aethiops , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Humanos , Células Jurkat , Ligantes , Moléculas de Adesão de Célula Nervosa/genética , Ligação Proteica/genética , Ratos , Relação Estrutura-Atividade
11.
Vaccine ; 24(21): 4527-30, 2006 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-16181710

RESUMO

Epitopes in HIV polymerase were analyzed by peptide binding to human leukocyte antigen (HLA) A0201 molecules, the most frequent HLA class in the Caucasian population. We found that HIV-1 protease peptides representing both the wild type and anticipated drug resistance variants of the sequence bound well to HLA-A0201. We also found that wild type as well as a double mutated variant of the epitope was strongly immunogenic in HLA-A0201 transgenic mice, either as individual peptides or encoded in DNA multi-CTL epitope constructs. Immunological cross-reactivity between different variants of the peptide could be seen, suggesting that it may be possible to induce a broad immune response by immunizing with drug resistance-mutated epitopes. This may be of advantage for HIV-1 infected patients since such a response may cause a better outcome of an anti-retroviral drug therapy.


Assuntos
Reações Cruzadas , Epitopos/imunologia , Protease de HIV/imunologia , Mutação , Linfócitos T Citotóxicos/imunologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Feminino , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , Protease de HIV/genética , Antígenos HLA/imunologia , Humanos , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , RNA Mensageiro/genética , Homologia de Sequência de Aminoácidos
12.
FEBS Lett ; 579(17): 3789-96, 2005 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-15978587

RESUMO

The RET receptor tyrosine kinase controls kidney organogenesis and development of subpopulations of enteric and sensory neurons in different vertebrate species, including humans, rodents, chicken and zebrafish. RET is activated by binding to a ligand complex formed by a member of the glial cell line-derived neurotrophic factor (GDNF) family of neurotrophic factors bound to its cognate GFRalpha GPI-linked co-receptor. Despite the absence of GDNF or GFRalpha molecules in the Drosophila genome, a RET orthologue (dRET) has recently been described in this organism and shown to be expressed in subpopulations of cells of the excretory, digestive and nervous systems, thus resembling the expression pattern of RET in vertebrates. In this study, we report on the initial biochemical and functional characterization of the dRET protein in cell culture systems. Full-length dRET could be produced in mammalian and insect cells. Similar to its human counterpart (hRET), overexpression of dRET resulted in its ligand-independent tyrosine phosphorylation, indicating that it bears an active tyrosine kinase. Unlike hRET, however, the extracellular domain of dRET was unable to interact with mammalian GDNF and GFRalpha1. Self association between dRET molecules could neither be detected, indicating that dRET is incapable of mediating cell adhesion by homophilic interactions. A chimeric molecule comprising the extracellular domain of hRET and the kinase domain of dRET was constructed and used to probe ligand-mediated downstream activities of the dRET kinase in PC12 cells. GDNF stimulation of cells transfected with the hRET/dRET chimera resulted in neurite outgrowth comparable to that obtained after transfection of wild-type hRET. These results indicate significant conservation between the biological effects elicited by the human and Drosophila RET kinases, and suggest functions for dRET in neuronal differentiation in the fly.


Assuntos
Proteínas de Drosophila/metabolismo , Neurônios/enzimologia , Receptores Proteína Tirosina Quinases/metabolismo , Sequência de Aminoácidos , Animais , Diferenciação Celular , Proteínas de Drosophila/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Humanos , Ligantes , Dados de Sequência Molecular , Fatores de Crescimento Neural/farmacologia , Neurônios/efeitos dos fármacos , Células PC12 , Fosforilação , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-ret , Ratos , Receptores Proteína Tirosina Quinases/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
13.
Vaccine ; 22(13-14): 1810-9, 2004 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-15068865

RESUMO

Drug resistance is becoming a problem in the treatment of the human immunodeficiency virus type one (HIV-1). To obtain therapeutic DNA vaccines that would target multiple drug-resistance (DR) mutations, we cloned genes for DR HIV-1 reverse transcriptase (RT) and codon-optimized synthetic genes encoding clusters of human CTL epitopes located at the sites of DR-mutations (RT minigenes) and antibody and CTL-epitope tags. Expression of RT genes/minigenes in eukaryotic cells was confirmed by Western blotting and immunofluoresence staining with RT- or tag-specific antibodies. Immunization of mice with DR-RT gene induced no RT-specific antibodies. Immunization of HLA-A(*)0201-transgenic mice with RT minigenes induced RT-specific cellular responses detected by interferon-gamma secretion. This documents first steps in creating therapeutic vaccine against drug-resistant HIV strains.


Assuntos
Vacinas contra a AIDS/genética , Vacinas contra a AIDS/imunologia , Transcriptase Reversa do HIV/genética , Transcriptase Reversa do HIV/imunologia , HIV-1/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Farmacorresistência Viral , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Imunofluorescência , Antígenos HLA-A/imunologia , Imunoensaio , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Mutação/genética , Mutação/imunologia , Oócitos/metabolismo , Inibidores da Transcriptase Reversa/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Xenopus laevis
14.
AIDS ; 16(17): 2335-7, 2002 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-12441807

RESUMO

We have cloned and sequenced the chimpanzee (Pan troglodytes) cyclin T1 cDNA and performed functional HIV-1 Tat trans-activation studies. A unique codon deletion leading to a deleted asparagine residue in the N-terminal region of the first cyclin domain was discovered. This mutation does not significantly change the trans-activation of HIV-1, suggesting that Tat-Cyclin T1 mediated transcription is not a major barrier to HIV replication in the chimpanzee.


Assuntos
Ciclinas/genética , Deleção de Genes , HIV-1/genética , Pan troglodytes/virologia , Ativação Transcricional , Animais , Sequência de Bases , Feminino , Produtos do Gene tat , Masculino , Dados de Sequência Molecular , Produtos do Gene tat do Vírus da Imunodeficiência Humana
15.
Proc Natl Acad Sci U S A ; 99(5): 2690-5, 2002 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-11867724

RESUMO

We present an approach that allows rapid determination of the topology of Escherichia coli inner-membrane proteins by a combination of topology prediction and limited fusion-protein analysis. We derive new topology models for 12 inner-membrane proteins: MarC, PstA, TatC, YaeL, YcbM, YddQ, YdgE, YedZ, YgjV, YiaB, YigG, and YnfA. We estimate that our approach should make it possible to arrive at highly reliable topology models for roughly 10% of the approximately 800 inner-membrane proteins thought to exist in E. coli.


Assuntos
Proteínas de Bactérias/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Fosfatase Alcalina , Quinases Ciclina-Dependentes/genética , Proteínas de Escherichia coli , Genes Reporter , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...