Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biofilm ; 7: 100204, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38948680

RESUMO

In vitro platforms capable of mimicking the hydrodynamic conditions prevailing in natural aquatic environments have been previously validated and used to predict the fouling behavior on different surfaces. Computational Fluid Dynamics (CFD) has been used to predict the shear forces occurring in these platforms. In general, these predictions are made for the initial stages of biofilm formation, where the amount of biofilm does not affect the flow behavior, enabling the estimation of the shear forces that initial adhering organisms have to withstand. In this work, we go a step further in understanding the flow behavior when a mature biofilm is present in such platforms to better understand the shear rate distribution affecting marine biofilms. Using 3D images obtained by Optical Coherence Tomography, a mesh was produced and used in CFD simulations. Biofilms of two different marine cyanobacteria were developed in agitated microtiter plates incubated at two different shaking frequencies for 7 weeks. The biofilm-flow interactions were characterized in terms of the velocity field and shear rate distribution. Results show that global hydrodynamics imposed by the different shaking frequencies affect biofilm architecture and also that this architecture affects local hydrodynamics, causing a large heterogeneity in the shear rate field. Biofilm cells located in the streamers of the biofilm are subjected to much higher shear values than those located on the bottom of the streamers and this dispersion in shear rate values increases at lower bulk fluid velocities. This heterogeneity in the shear force field may be a contributing factor for the heterogeneous behavior in metabolic activity, growth status, gene expression pattern, and antibiotic resistance often associated with nutrient availability within the biofilm.

2.
Biofilm ; 7: 100185, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38444517

RESUMO

The ability of bacteria to adhere to and form biofilms on food contact surfaces poses serious challenges, as these may lead to the cross-contamination of food products. Biomimetic topographic surface modifications have been explored to enhance the antifouling performance of materials. In this study, the topography of two plant leaves, Brassica oleracea var. botrytis (cauliflower, CF) and Brassica oleracea capitate (white cabbage, WC), was replicated through wax moulding, and their antibiofilm potential was tested against single- and dual-species biofilms of Escherichia coli and Pseudomonas putida. Biomimetic surfaces exhibited higher roughness values (SaWC = 4.0 ± 1.0 µm and SaCF = 3.3 ± 1.0 µm) than the flat control (SaF = 0.6 ± 0.2 µm), whilst the CF surface demonstrated a lower interfacial free energy (ΔGiwi) than the WC surface (-100.08 mJ m-2 and -71.98 mJ m-2, respectively). The CF and WC surfaces had similar antibiofilm effects against single-species biofilms, achieving cell reductions of approximately 50% and 60% for E. coli and P. putida, respectively, compared to the control. Additionally, the biomimetic surfaces led to reductions of up to 60% in biovolume, 45% in thickness, and 60% in the surface coverage of single-species biofilms. For dual-species biofilms, only the E. coli strain growing on the WC surface exhibited a significant decrease in the cell count. However, confocal microscopy analysis revealed a 60% reduction in the total biovolume and surface coverage of mixed biofilms developed on both biomimetic surfaces. Furthermore, dual-species biofilms were mainly composed of P. putida, which reduced E. coli growth. Altogether, these results demonstrate that the surface properties of CF and WC biomimetic surfaces have the potential for reducing biofilm formation.

3.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36498973

RESUMO

Marine biofouling is a natural process often associated with biofilm formation on submerged surfaces, creating a massive economic and ecological burden. Although several antifouling paints have been used to prevent biofouling, growing ecological concerns emphasize the need to develop new and environmentally friendly antifouling approaches such as bio-based coatings. Chitosan (CS) is a natural polymer that has been widely used due to its outstanding biological properties, including non-toxicity and antimicrobial activity. This work aims to produce and characterize poly (lactic acid) (PLA)-CS surfaces with CS of different molecular weight (Mw) at different concentrations for application in marine paints. Loligo opalescens pens, a waste from the fishery industry, were used as a CS source. The antimicrobial activity of the CS and CS-functionalized surfaces was assessed against Cobetia marina, a model proteobacterium for marine biofouling. Results demonstrate that CS targets the bacterial cell membrane, and PLA-CS surfaces were able to reduce the number of culturable cells up to 68% compared to control, with this activity dependent on CS Mw. The antifouling performance was corroborated by Optical Coherence Tomography since PLA-CS surfaces reduced the biofilm thickness by up to 36%, as well as the percentage and size of biofilm empty spaces. Overall, CS coatings showed to be a promising approach to reducing biofouling in marine environments mimicked in this work, contributing to the valorization of fishing waste and encouraging further research on this topic.


Assuntos
Anti-Infecciosos , Incrustação Biológica , Quitosana , Quitosana/farmacologia , Incrustação Biológica/prevenção & controle , Biofilmes , Pintura
4.
Polymers (Basel) ; 14(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36297988

RESUMO

The development of environmentally friendly antifouling strategies for marine applications is of paramount importance, and the fabrication of innovative nanocomposite coatings is a promising approach. Moreover, since Optical Coherence Tomography (OCT) is a powerful imaging technique in biofilm science, the improvement of its analytical power is required to better evaluate the biofilm structure under different scenarios. In this study, the effect of carbon nanotube (CNT)-modified surfaces in cyanobacterial biofilm development was assessed over a long-term assay under controlled hydrodynamic conditions. Their impact on the cyanobacterial biofilm architecture was evaluated by novel parameters obtained from three-dimensional (3D) OCT analysis, such as the contour coefficient, total biofilm volume, biovolume, volume of non-connected pores, and the average size of non-connected pores. The results showed that CNTs incorporated into a commercially used epoxy resin (CNT composite) had a higher antifouling effect at the biofilm maturation stage compared to pristine epoxy resin. Along with a delay in biofilm development, a decrease in biofilm wet weight, thickness, and biovolume was also achieved with the CNT composite compared to epoxy resin and glass (control surfaces). Additionally, biofilms developed on the CNT composite were smoother and presented a lower porosity and a strictly packed structure when compared with those formed on the control surfaces. The novel biofilm parameters obtained from 3D OCT imaging are extremely important when evaluating the biofilm architecture and behavior under different scenarios beyond marine applications.

5.
Crit Rev Microbiol ; 48(5): 624-640, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34879216

RESUMO

Biomaterial-associated infections (BAIs) are an increasing problem where antibiotic therapies are often ineffective. The design of novel strategies to prevent or combat infection requires a better understanding of how an implanted foreign body prevents the immune system from eradicating surface-colonizing pathogens. The objective of this review is to chart factors resulting in sub-optimal clearance of Staphylococcus aureus bacteria involved in BAIs. To this end, we first describe three categories of bacterial mechanisms to counter the host immune system around foreign bodies: direct interaction with host cells, modulation of intercellular communication, and evasion of the immune system. These mechanisms take place in a time frame that differentiates sterile foreign body reactions, BAIs, and soft tissue infections. In addition, we identify experimental interventions in S. aureus BAI that may impact infectious mechanisms. Most experimental treatments modulate the host response to infection or alter the course of BAI through implant surface modulation. In conclusion, the first week after implantation and infection is crucial for the establishment of an S. aureus biofilm that resists the local immune reaction and antibiotic treatment. Although established and chronic S. aureus BAI is still treatable and manageable, the focus of interventions should lie on this first period.


Assuntos
Corpos Estranhos , Infecções Estafilocócicas , Antibacterianos/uso terapêutico , Materiais Biocompatíveis/efeitos adversos , Biofilmes , Corpos Estranhos/tratamento farmacológico , Reação a Corpo Estranho/tratamento farmacológico , Reação a Corpo Estranho/etiologia , Humanos , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética
6.
Microorganisms ; 9(5)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065462

RESUMO

Since biofilm formation by microfoulers significantly contributes to the fouling process, it is important to evaluate the performance of marine surfaces to prevent biofilm formation, as well as understand their interactions with microfoulers and how these affect biofilm development and structure. In this study, the long-term performance of five surface materials-glass, perspex, polystyrene, epoxy-coated glass, and a silicone hydrogel coating-in inhibiting biofilm formation by cyanobacteria was evaluated. For this purpose, cyanobacterial biofilms were developed under controlled hydrodynamic conditions typically found in marine environments, and the biofilm cell number, wet weight, chlorophyll a content, and biofilm thickness and structure were assessed after 49 days. In order to obtain more insight into the effect of surface properties on biofilm formation, they were characterized concerning their hydrophobicity and roughness. Results demonstrated that silicone hydrogel surfaces were effective in inhibiting cyanobacterial biofilm formation. In fact, biofilms formed on these surfaces showed a lower number of biofilm cells, chlorophyll a content, biofilm thickness, and percentage and size of biofilm empty spaces compared to remaining surfaces. Additionally, our results demonstrated that the surface properties, together with the features of the fouling microorganisms, have a considerable impact on marine biofouling potential.

7.
Sci Rep ; 11(1): 13241, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168199

RESUMO

A major contributor to biomaterial associated infection (BAI) is Staphylococcus aureus. This pathogen produces a protective biofilm, making eradication difficult. Biofilms are composed of bacteria encapsulated in a matrix of extracellular polymeric substances (EPS) comprising polysaccharides, proteins and extracellular DNA (eDNA). S. aureus also produces micrococcal nuclease (MN), an endonuclease which contributes to biofilm composition and dispersion, mainly expressed by nuc1. MN expression can be modulated by sub-minimum inhibitory concentrations of antimicrobials. We investigated the relation between the biofilm and MN expression and the impact of the application of antimicrobial pressure on this relation. Planktonic and biofilm cultures of three S. aureus strains, including a nuc1 deficient strain, were cultured under antimicrobial pressure. Results do not confirm earlier findings that MN directly influences total biomass of the biofilm but indicated that nuc1 deletion stimulates the polysaccharide production per CFU in the biofilm in in vitro biofilms. Though antimicrobial pressure of certain antibiotics resulted in significantly increased quantities of polysaccharides per CFU, this did not coincide with significantly reduced MN activity. Erythromycin and resveratrol significantly reduced MN production per CFU but did not affect total biomass or biomass/CFU. Reduction of MN production may assist in the eradication of biofilms by the host immune system in clinical situations.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Nuclease do Micrococo/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Ciprofloxacina/farmacologia , Doxiciclina/farmacologia , Eritromicina/farmacologia , Gentamicinas/farmacologia , Nuclease do Micrococo/metabolismo , Polissacarídeos Bacterianos/metabolismo , Resveratrol/farmacologia , Staphylococcus aureus/enzimologia , Staphylococcus aureus/crescimento & desenvolvimento , Células-Tronco/efeitos dos fármacos , Vancomicina/farmacologia
8.
Bioact Mater ; 6(10): 3634-3657, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33898869

RESUMO

The implementation of nanotechnology to develop efficient antimicrobial systems has a significant impact on the prospects of the biomedical field. Nanogels are soft polymeric particles with an internally cross-linked structure, which behave as hydrogels and can be reversibly hydrated/dehydrated (swollen/shrunken) by the dispersing solvent and external stimuli. Their excellent properties, such as biocompatibility, colloidal stability, high water content, desirable mechanical properties, tunable chemical functionalities, and interior gel-like network for the incorporation of biomolecules, make them fascinating in the field of biological/biomedical applications. In this review, various approaches will be discussed and compared to the newly developed nanogel technology in terms of efficiency and applicability for determining their potential role in combating infections in the biomedical area including implant-associated infections.

9.
Front Cell Infect Microbiol ; 11: 799845, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111695

RESUMO

Advancements in contemporary medicine have led to an increasing life expectancy which has broadened the application of biomaterial implants. As each implant procedure has an innate risk of infection, the number of biomaterial-associated infections keeps rising. Staphylococcus aureus causes 34% of such infections and is known as a potent biofilm producer. By secreting micrococcal nuclease S. aureus is able to escape neutrophil extracellular traps by cleaving their DNA-backbone. Also, micrococcal nuclease potentially limits biofilm growth and adhesion by cleaving extracellular DNA, an important constituent of biofilms. This study aimed to evaluate the impact of micrococcal nuclease on infection persistence and biofilm formation in a murine biomaterial-associated infection-model with polyvinylidene-fluoride mesh implants inoculated with bioluminescent S. aureus or its isogenic micrococcal nuclease deficient mutant. Supported by results based on in-vivo bioluminescence imaging, ex-vivo colony forming unit counts, and histological analysis it was found that production of micrococcal nuclease enables S. aureus bacteria to evade the immune response around an implant resulting in a persistent infection. As a novel finding, histological analysis provided clear indications that the production of micrococcal nuclease stimulates S. aureus to form biofilms, the presence of which extended neutrophil extracellular trap formation up to 13 days after mesh implantation. Since micrococcal nuclease production appeared vital for the persistence of S. aureus biomaterial-associated infection, targeting its production could be a novel strategy in preventing biomaterial-associated infection.


Assuntos
Armadilhas Extracelulares , Infecções Estafilocócicas , Animais , Biofilmes , Camundongos , Nuclease do Micrococo/genética , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética
10.
Sci Rep ; 10(1): 12093, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694559

RESUMO

Staphylococcus aureus is commonly associated with biofilm-related infections and contributes to the large financial loss that accompany nosocomial infections. The micrococcal nuclease Nuc1 enzyme limits biofilm formation via cleavage of eDNA, a structural component of the biofilm matrix. Solid surface hydrophobicity influences bacterial adhesion forces and may as well influence eDNA production. Therefore, it is hypothesized that the impact of Nuc1 activity is dependent on surface characteristics of solid surfaces. For this reason, this study investigated the influence of solid surface hydrophobicity on S. aureus Newman biofilms where Nuc1 is constitutively produced. To this end, biofilms of both a wild-type and a nuc1 knockout mutant strain, grown on glass, salinized glass and Pluronic F-127-coated silanized glass were analysed. Results indicated that biofilms can grow in the presence of Nuc1 activity. Also, Nuc1 and solid surface hydrophobicity significantly affected the biofilm 3D-architecture. In particular, biofilm densities of the wild-type strain on hydrophilic surfaces appeared higher than of the mutant nuc1 knockout strain. Since virulence is related to bacterial cell densities, this suggests that the virulence of S. aureus Newman biofilms is increased by its nuclease production in particular on a hydrophilic surface.


Assuntos
Biofilmes/crescimento & desenvolvimento , Desoxirribonucleases/metabolismo , Mutação , Staphylococcus aureus/fisiologia , Aderência Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas Bacteriológicas , Desoxirribonucleases/genética , Vidro/química , Interações Hidrofóbicas e Hidrofílicas , Poloxâmero/análogos & derivados , Poloxâmero/química , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética , Propriedades de Superfície
11.
Environ Microbiol ; 21(11): 4411-4424, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31573125

RESUMO

Marine biofouling has severe economic impacts and cyanobacteria play a significant role as early surface colonizers. Despite this fact, cyanobacterial biofilm formation studies in controlled hydrodynamic conditions are scarce. In this work, computational fluid dynamics was used to determine the shear rate field on coupons that were placed inside the wells of agitated 12-well microtiter plates. Biofilm formation by three different cyanobacterial strains was assessed at two different shear rates (4 and 40 s-1 ) which can be found in natural ecosystems and using different surfaces (glass and perspex). Biofilm formation was higher under low shear conditions, and differences obtained between surfaces were not always statistically significant. The hydrodynamic effect was more noticeable during the biofilm maturation phase rather than during initial cell adhesion and optical coherence tomography showed that different shear rates can affect biofilm architecture. This study is particularly relevant given the cosmopolitan distribution of these cyanobacterial strains and the biofouling potential of these organisms.


Assuntos
Biofilmes , Cianobactérias/fisiologia , Hidrodinâmica
12.
Sci Rep ; 9(1): 9794, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31278369

RESUMO

Optical-coherence-tomography (OCT) is a non-destructive tool for biofilm imaging, not requiring staining, and used to measure biofilm thickness and putative comparison of biofilm structure based on signal intensity distributions in OCT-images. Quantitative comparison of biofilm signal intensities in OCT-images, is difficult due to the auto-scaling applied in OCT-instruments to ensure optimal quality of individual images. Here, we developed a method to eliminate the influence of auto-scaling in order to allow quantitative comparison of biofilm densities in different images. Auto- and re-scaled signal intensities could be qualitatively interpreted in line with biofilm characteristics for single and multi-species biofilms of different strains and species (cocci and rod-shaped organisms), demonstrating qualitative validity of auto- and re-scaling analyses. However, specific features of pseudomonas and oral multi-species biofilms were more prominently expressed after re-scaling. Quantitative validation was obtained by relating average auto- and re-scaled signal intensities across biofilm images with volumetric-bacterial-densities in biofilms, independently obtained using enumeration of bacterial numbers per unit biofilm volume. The signal intensities in auto-scaled biofilm images did not significantly relate with volumetric-bacterial-densities, whereas re-scaled intensities in images of biofilms of widely different strains and species increased linearly with independently determined volumetric-bacterial-densities in the biofilms. Herewith, the proposed re-scaling of signal intensity distributions in OCT-images significantly enhances the possibilities of biofilm imaging using OCT.


Assuntos
Bactérias/crescimento & desenvolvimento , Biofilmes , Tomografia de Coerência Óptica , Algoritmos , Biofilmes/crescimento & desenvolvimento , Modelos Teóricos
13.
Macromol Biosci ; 19(5): e1800384, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30884146

RESUMO

In Europe, the mean incidence of urinary tract infections in intensive care units is 1.1 per 1000 patient-days. Of these cases, catheter-associated urinary tract infections (CAUTI) account for 98%. In total, CAUTI in hospitals is estimated to give additional health-care costs of £1-2.5 billion in the United Kingdom alone. This is in sharp contrast to the low cost of urinary catheters and emphasizes the need for innovative products that reduce the incidence rate of CAUTI. Ureteral stents and other urinary-tract devices suffer similar problems. Antimicrobial strategies are being developed, however, the evaluation of their efficacy is very challenging. This review aims to provide considerations and recommendations covering all relevant aspects of antimicrobial material testing, including surface characterization, biocompatibility, cytotoxicity, in vitro and in vivo tests, microbial strain selection, and hydrodynamic conditions, all in the perspective of complying to the complex pathology of device-associated urinary tract infection. The recommendations should be on the basis of standard assays to be developed which would enable comparisons of results obtained in different research labs both in industry and in academia, as well as provide industry and academia with tools to assess the antimicrobial properties for urinary tract devices in a reliable way.


Assuntos
Antibacterianos , Infecções Relacionadas a Cateter/prevenção & controle , Infecções Urinárias/prevenção & controle , Sistema Urinário , Antibacterianos/química , Antibacterianos/uso terapêutico , Feminino , Humanos , Masculino
14.
Microb Cell ; 5(7): 300-326, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29992128

RESUMO

Unlike superficial fungal infections of the skin and nails, which are the most common fungal diseases in humans, invasive fungal infections carry high morbidity and mortality, particularly those associated with biofilm formation on indwelling medical devices. Therapeutic management of these complex diseases is often complicated by the rise in resistance to the commonly used antifungal agents. Therefore, the availability of accurate susceptibility testing methods for determining antifungal resistance, as well as discovery of novel antifungal and antibiofilm agents, are key priorities in medical mycology research. To direct advancements in this field, here we present an overview of the methods currently available for determining (i) the susceptibility or resistance of fungal isolates or biofilms to antifungal or antibiofilm compounds and compound combinations; (ii) the in vivo efficacy of antifungal and antibiofilm compounds and compound combinations; and (iii) the in vitro and in vivo performance of anti-infective coatings and materials to prevent fungal biofilm-based infections.

15.
Nanoscale ; 10(23): 11123-11133, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29873372

RESUMO

In infections, bacteria often adhere to surfaces and become deformed by the forces with which they adhere. Nanoscopic cell wall deformation defines bacterial responses to environmental conditions and is likely influenced by antibiotics. Here, staphylococcal cell wall deformation upon exposure to cell wall active and non-active antibiotics or their combinations is compared for two green-fluorescent (GFP) isogenic Staphylococcus aureus strains adhering to a gold surface, of which one lacks peptidoglycan cross-linking. Exposure to cell wall active antibiotics caused greater cell wall deformation than a buffer control in the GFP parent and in the Δpbp4GFP isogenic mutant, as measured by surface-enhanced-fluorescence. Cell wall non-active antibiotics only yielded greater deformation than a buffer control in the parent strain, while combinations of cell wall active and non-active antibiotics did not cause greater cell wall deformation. 3D-analysis of the impact of adhesion forces and Young's moduli of the cell wall, both measured using atomic force microscopy, led to the conclusion that increased deformation was mainly due to cell wall weakening and not due to the effects of antibiotics on adhesion forces. Interactions between bacteria and antibiotics are mostly studied using planktonic bacteria, while during infection, bacteria are in an adhering state that deforms their cell wall and therewith influences their adaptive responses. We anticipate that the demonstration of cell wall weakening in adhering bacteria under the influence of antibiotics and the role of peptidoglycan herein will aid in the development of new antibiotics. Surface-enhanced-fluorescence may accordingly develop into a new, highly-sensitive method for diagnosing antibiotic-resistant bacteria.


Assuntos
Antibacterianos/farmacologia , Parede Celular/ultraestrutura , Peptidoglicano/química , Staphylococcus aureus/efeitos dos fármacos , Aderência Bacteriana , Parede Celular/efeitos dos fármacos , Fluorescência , Staphylococcus aureus/ultraestrutura
16.
Appl Environ Microbiol ; 84(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29802194

RESUMO

The transmission of bacteria in biofilms from donor to receiver surfaces precedes the formation of biofilms in many applications. Biofilm transmission is different from bacterial adhesion, because it involves biofilm compression in between two surfaces, followed by a separation force leading to the detachment of the biofilm from the donor surface and subsequent adhesion to the receiver surface. Therewith, the transmission depends on a balance between donor and receiver surface properties and the cohesiveness of the biofilm itself. Here, we compare bacterial transmission from biofilms of an extracellular-polymeric-substance (EPS)-producing and a non-EPS-producing staphylococcal strain and a dual-species oral biofilm from smooth silicon (Si) donor surfaces to smooth and nanopillared Si receiver surfaces. Biofilms were fully covering the donor surface before transmission. However, after transmission, the biofilms only partly covered the donor and receiver surfaces regardless of nanopillaring, indicating bacterial transmission through adhesive failure at the interface between biofilms and donor surfaces as well as through cohesive failure in the biofilms. The numbers of bacteria per unit volume in EPS-producing staphylococcal biofilms before transmission were 2-fold smaller than in biofilms of the non-EPS-producing strain and of dual species. This difference increased after transmission in the biofilm left behind on the donor surfaces due to an increased bacterial density for the non-EPS-producing strain and a dual-species biofilm. This suggests that biofilms of the non-EPS-producing strain and dual species remained compressed after transmission, while biofilms of the EPS-producing strain were induced to produce more EPS during transmission and relaxed toward their initial state after transmission due to the viscoelasticity conferred to the biofilm by its EPS.IMPORTANCE Bacterial transmission from biofilm-covered surfaces to surfaces is mechanistically different from bacterial adhesion to surfaces and involves detachment from the donor and adhesion to the receiver surfaces under pressure. Bacterial transmission occurs, for instance, in food processing or packaging, in household situations, or between surfaces in hospitals. Patients admitted to a hospital room previously occupied by a patient with antibiotic-resistant pathogens are at elevated infection risk by the same pathogens through transmission. Nanopillared receiver surfaces did not collect less biofilm from a smooth donor than a smooth receiver, likely because the pressure applied during transmission negated the smaller contact area between bacteria and nanopillared surfaces, generally held responsible for reduced adhesion. Biofilm left behind on smooth donor surfaces of a non-extracellular-polymeric-substance (EPS)-producing strain and dual species had undergone different structural changes than an EPS-producing strain, which is important for their possible further treatment by antimicrobials or disinfectants.


Assuntos
Biofilmes , Staphylococcus/química , Fenômenos Biomecânicos , Elasticidade , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Staphylococcus/fisiologia , Propriedades de Superfície , Viscosidade
17.
Langmuir ; 34(17): 4937-4944, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29649869

RESUMO

Models for bacterial adhesion to substratum surfaces all include uncertainty with respect to the (ir)reversibility of adhesion. In a model, based on vibrations exhibited by adhering bacteria parallel to a surface, adhesion was described as a result of reversible binding of multiple bacterial tethers that detach from and successively reattach to a surface, eventually making bacterial adhesion irreversible. Here, we use total internal reflection microscopy to determine whether adhering bacteria also exhibit variations over time in their perpendicular distance above surfaces. Streptococci with fibrillar surface tethers showed perpendicular vibrations with amplitudes of around 5 nm, regardless of surface hydrophobicity. Adhering, nonfibrillated streptococci vibrated with amplitudes around 20 nm above a hydrophobic surface. Amplitudes did not depend on ionic strength for either strain. Calculations of bacterial energies from their distances above the surfaces using the Boltzman equation showed that bacteria with fibrillar tethers vibrated as a harmonic oscillator. The energy of bacteria without fibrillar tethers varied with distance in a comparable fashion as the DLVO (Derjaguin, Landau, Verwey, and Overbeek)-interaction energy. Distance variations above the surface over time of bacteria with fibrillar tethers are suggested to be governed by the harmonic oscillations, allowed by elasticity of the tethers, piercing through the potential energy barrier. Bacteria without fibrillar tethers "float" above a surface in the secondary energy minimum, with their perpendicular displacement restricted by their thermal energy and the width of the secondary minimum. The distinction between "tether-coupled" and "floating" adhesion is new, and may have implications for bacterial detachment strategies.


Assuntos
Aderência Bacteriana , Fenômenos Fisiológicos Bacterianos , Microbiologia Ambiental , Interações Hidrofóbicas e Hidrofílicas , Bactérias , Concentração Osmolar , Propriedades de Superfície , Vibração
18.
Acta Biomater ; 70: 12-24, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29432983

RESUMO

Bacterial adhesion and subsequent biofilm formation on biomedical implants and devices are a major cause of their failure. As systemic antibiotic treatment is often ineffective, there is an urgent need for antimicrobial biomaterials and coatings. The term "antimicrobial" can encompass different mechanisms of action (here termed "antimicrobial surface designs"), such as antimicrobial-releasing, contact-killing or non-adhesivity. Biomaterials equipped with antimicrobial surface designs based on different mechanisms of action require different in vitro evaluation methods. Available industrial standard evaluation tests do not address the specific mechanisms of different antimicrobial surface designs and have therefore been modified over the past years, adding to the myriad of methods available in the literature to evaluate antimicrobial surface designs. The aim of this review is to categorize fourteen presently available methods including industrial standard tests for the in vitro evaluation of antimicrobial surface designs according to their suitability with respect to their antimicrobial mechanism of action. There is no single method or industrial test that allows to distinguish antimicrobial designs according to all three mechanisms identified here. However, critical consideration of each method clearly relates the different methods to a specific mechanism of antimicrobial action. It is anticipated that use of the provided table with the fourteen methods will avoid the use of wrong methods for evaluating new antimicrobial designs and therewith facilitate translation of novel antimicrobial biomaterials and coatings to clinical use. The need for more and better updated industrial standard tests is emphasized. STATEMENT OF SIGNIFICANCE: European COST-action TD1305, IPROMEDAI aims to provide better understanding of mechanisms of antimicrobial surface designs of biomaterial implants and devices. Current industrial evaluation standard tests do not sufficiently account for different, advanced antimicrobial surface designs, yet are urgently needed to obtain convincing in vitro data for approval of animal experiments and clinical trials. This review aims to provide an innovative and clear guide to choose appropriate evaluation methods for three distinctly different mechanisms of antimicrobial design: (1) antimicrobial-releasing, (2) contact-killing and (3) non-adhesivity. Use of antimicrobial evaluation methods and definition of industrial standard tests, tailored toward the antimicrobial mechanism of the design, as identified here, fulfill a missing link in the translation of novel antimicrobial surface designs to clinical use.


Assuntos
Anti-Infecciosos/química , Bactérias/crescimento & desenvolvimento , Aderência Bacteriana , Materiais Revestidos Biocompatíveis/química , Animais , Humanos , Propriedades de Superfície
19.
Crit Rev Biotechnol ; 38(5): 657-670, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28954541

RESUMO

Biofilms can cause severe problems to human health due to the high tolerance to antimicrobials; consequently, biofilm science and technology constitutes an important research field. Growing a relevant biofilm in the laboratory provides insights into the basic understanding of the biofilm life cycle including responses to antibiotic therapies. Therefore, the selection of an appropriate biofilm reactor is a critical decision, necessary to obtain reproducible and reliable in vitro results. A reactor should be chosen based upon the study goals and a balance between the pros and cons associated with its use and operational conditions that are as similar as possible to the clinical setting. However, standardization in biofilm studies is rare. This review will focus on the four reactors (Calgary biofilm device, Center for Disease Control biofilm reactor, drip flow biofilm reactor, and rotating disk reactor) approved by a standard setting organization (ASTM International) for biofilm experiments and how researchers have modified these standardized reactors and associated protocols to improve the study and understanding of medical biofilms.


Assuntos
Biofilmes , Pesquisa Biomédica , Reatores Biológicos , Modelos Biológicos , Animais , Pesquisa Biomédica/instrumentação , Pesquisa Biomédica/normas , Humanos , Técnicas Analíticas Microfluídicas , Reprodutibilidade dos Testes
20.
Adv Colloid Interface Sci ; 250: 15-24, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29129313

RESUMO

Bacterial adhesion is a main problem in many biomedical, domestic, natural and industrial environments and forms the onset of the formation of a biofilm, in which adhering bacteria grow into a multi-layered film while embedding themselves in a matrix of extracellular polymeric substances. It is usually assumed that bacterial adhesion occurs from air or by convective-diffusion from a liquid suspension, but often bacteria adhere by transmission from a bacterially contaminated donor to a receiver surface. Therewith bacterial transmission is mechanistically different from adhesion, as it involves bacterial detachment from a donor surface followed by adhesion to a receiver one. Transmission is further complicated when the donor surface is not covered with a single layer of adhering bacteria but with a multi-layered biofilm, in which case bacteria can be transmitted either by interfacial failure at the biofilm-donor surface or through cohesive failure in the biofilm. Transmission through cohesive failure in a biofilm is more common than interfacial failure. The aim of this review is to oppose surface thermodynamics and adhesion force analyses, as can both be applied towards bacterial adhesion, with their appropriate extensions towards transmission. Opposition of surface thermodynamics and adhesion force analyses, will allow to distinguish between transmission of bacteria from a donor covered with a (sub)monolayer of adhering bacteria or a multi-layered biofilm. Contact angle measurements required for surface thermodynamic analyses of transmission are of an entirely different nature than analyses of adhesion forces, usually measured through atomic force microscopy. Nevertheless, transmission probabilities based on Weibull analyses of adhesion forces between bacteria and donor and receiver surfaces, correspond with the surface thermodynamic preferences of bacteria for either the donor or receiver surface. Surfaces with low adhesion forces such as polymer-brush coated or nanostructured surfaces are thus preferable for use as non-adhesive receiver surfaces, but at the same time should be avoided for use as a donor surface. Since bacterial transmission occurs under a contact pressure between two surfaces, followed by their separation under tensile or shear pressure and ultimately detachment, this will affect biofilm structure. During the compression phase of transmission, biofilms are compacted into a more dense film. After transmission, and depending on the ability of the bacterial strain involved to produce extracellular polymeric substances, biofilm left-behind on a donor or transmitted to a receiver surface will relax to its original, pre-transmission structure owing to the viscoelasticity of the extracellular polymeric substances matrix, when present. Apart from mechanistic differences between bacterial adhesion and transmission, the low numbers of bacteria generally transmitted require careful selection of suitably sensitive enumeration methods, for which culturing and optical coherence tomography are suggested. Opposing adhesion and transmission as done in this review, not only yields a better understanding of bacterial transmission, but may stimulate researchers to more carefully consider whether an adhesion or transmission model is most appropriate in the specific area of application aimed for, rather than routinely relying on adhesion models.


Assuntos
Aderência Bacteriana/fisiologia , Infecções Bacterianas/transmissão , Fenômenos Fisiológicos Bacterianos , Biofilmes , Humanos , Microscopia de Força Atômica , Nanoestruturas/microbiologia , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...