Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 441(1): 305-16, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21892922

RESUMO

Elevated MPO (myeloperoxidase) levels are associated with multiple human inflammatory pathologies. MPO catalyses the oxidation of Cl-, Br- and SCN- by H2O2 to generate the powerful oxidants hypochlorous acid (HOCl), hypobromous acid (HOBr) and hypothiocyanous acid (HOSCN) respectively. These species are antibacterial agents, but misplaced or excessive production is implicated in tissue damage at sites of inflammation. Unlike HOCl and HOBr, which react with multiple targets, HOSCN targets cysteine residues with considerable selectivity. In the light of this reactivity, we hypothesized that Sec (selenocysteine) residues should also be rapidly oxidized by HOSCN, as selenium atoms are better nucleophiles than sulfur. Such oxidation might inactivate critical Sec-containing cellular protective enzymes such as GPx (glutathione peroxidase) and TrxR (thioredoxin reductase). Stopped-flow kinetic studies indicate that seleno-compounds react rapidly with HOSCN with rate constants, k, in the range 2.8×10(3)-5.8×10(6) M-1·s-1 (for selenomethionine and selenocystamine respectively). These values are ~6000-fold higher than the corresponding values for H2O2, and are also considerably larger than for the reaction of HOSCN with thiols (16-fold for cysteine and 80-fold for selenocystamine). Enzyme studies indicate that GPx and TrxR, but not glutathione reductase, are inactivated by HOSCN in a concentration-dependent manner; k for GPx has been determined as ~5×105 M-1·s-1. Decomposed HOSCN did not induce inactivation. These data indicate that selenocysteine residues are oxidized rapidly by HOSCN, with this resulting in the inhibition of the critical intracellular Sec-dependent protective enzymes GPx and TrxR.


Assuntos
Aminoácidos/química , Aminoácidos/metabolismo , Peroxidase/metabolismo , Selênio/química , Tiocianatos/metabolismo , Eritrócitos/química , Eritrócitos/metabolismo , Glutationa Peroxidase/metabolismo , Humanos , Cinética , Masculino , Estrutura Molecular , Oxirredução , Peroxidase/química , Tiocianatos/química , Tiorredoxina Dissulfeto Redutase/metabolismo
2.
Chem Res Toxicol ; 24(3): 371-82, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21344936

RESUMO

Hypochlorous (HOCl) and hypobromous (HOBr) acids are strong bactericidal oxidants that are generated by the human immune system but are implicated in the development of many human inflammatory diseases (e.g., atherosclerosis, asthma). These oxidants react readily with sulfur- and nitrogen-containing nucleophiles, with the latter generating N-halogenated species (e.g., chloramines/bromamines (RR'NX; X = Cl, Br)) as initial products. Redox-active metal ions and superoxide radicals (O(2)(•-)) can reduce N-halogenated species to nitrogen- and carbon-centered radicals. N-Halogenated species and O(2)(•-) are generated simultaneously at sites of inflammation, but the significance of their interactions remains unclear. In the present study, rate constants for the reduction of N-halogenated amines, amides, and imides to model potential biological substrates have been determined. Hydrated electrons reduce these species with k(2) > 10(9) M(-1) s(-1), whereas O(2)(•-) reduced only N-halogenated imides with complex kinetics indicative of chain reactions. For N-bromoimides, heterolytic cleavage of the N-Br bond yielded bromine atoms (Br(•)), whereas for other substrates, N-centered radicals and Cl(-)/Br(-) were produced. High-level quantum chemical procedures have been used to calculate gas-phase electron affinities and aqueous solution reduction potentials. The effects of substituents on the electron affinities of aminyl, amidyl, and imidyl radicals are rationalized on the basis of differential effects on the stabilities of the radicals and anions. The calculated reduction potentials are consistent with the experimental observations, with Br(•) production predicted for N-bromosuccinimide, while halide ion formation is predicted in all other cases. These data suggest that interaction of N-halogenated species with O(2)(•-) may produce deleterious N-centered radicals and Br(•).


Assuntos
Bromatos/química , Elétrons , Ácido Hipocloroso/química , Superóxidos/química , Bromosuccinimida/química , Cinética , Modelos Teóricos , Oxirredução , Piperidonas/química , Succinimidas/química
3.
Biochem J ; 422(1): 111-7, 2009 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-19492988

RESUMO

MPO (myeloperoxidase) catalyses the oxidation of chloride, bromide and thiocyanate by H(2)O(2) to HOCl (hypochlorous acid), HOBr (hypobromous acid) and HOSCN (hypothiocyanous acid, also know as cyanosulfenic acid) respectively. Specificity constants indicate that thiocyanate, SCN-, is a major substrate for MPO. HOSCN is also a major oxidant generated by other peroxidases including salivary, gastric and eosinophil peroxidases. Whereas HOCl and HOBr are powerful oxidizing agents, HOSCN appears to be a less reactive, but more thiol-specific oxidant. Although it is established that HOSCN selectively targets thiols, absolute kinetic data for the reactions of thiols with HOSCN are absent from the literature. This study shows for the first time that the reactions of HOSCN with low-molecular-mass thiol residues occur with rate constants in the range from 7.3 x 10(3) M(-1).s(-1) (for N-acetyl-cysteine at pH 7.4) to 7.7 x 10(6) M(-1).s(-1) (for 5-thio-2-nitrobenzoic acid at pH 6.0). An inverse relationship between the rate of reaction and the pKa of the thiol group was observed. The rates of reaction of HOSCN with thiol-containing proteins were also investigated for four proteins (creatine kinase, BSA, beta-lactoglobulin and beta-L-crystallins). The values obtained for cysteine residues on these proteins are in the range 1 x 10(4)- 7 x 10(4) M(-1).s(-1). These second-order rate constants indicate that HOSCN is a major mediator of thiol oxidation in biological systems exposed to peroxidase/H(2)O(2) systems at (patho)physiological concentrations of halide and SCN- ions, and that HOSCN may play an important role in inflammation-induced oxidative damage.


Assuntos
Proteínas/metabolismo , Compostos de Sulfidrila/metabolismo , Tiocianatos/metabolismo , Animais , Bovinos , Glutationa/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Nitrobenzoatos/metabolismo
4.
Biochem J ; 417(3): 773-81, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18851713

RESUMO

MPO (myeloperoxidase) catalyses the oxidation of chloride, bromide and thiocyanate to their respective hypohalous acids. We have investigated the generation of HOBr by human neutrophils in the presence of physiological concentrations of chloride and bromide. HOBr was trapped with taurine and detected by monitoring the bromination of 4-HPAA (4-hydroxyphenylacetic acid). With 100 microM bromide and 140 mM chloride, neutrophils generated HOBr and it accounted for approx. 13% of the hypohalous acids they produced. Addition of SOD (superoxide dismutase) doubled the amount of HOBr detected. Therefore we investigated the reaction of superoxide radicals with a range of bromamines and bromamides and found that superoxide radicals stimulated the decomposition of these species, with this occurring in a time- and dose-dependent manner. The protection afforded by SOD against such decay demonstrates that these processes are superoxide-radical-dependent. These data are consistent with neutrophils generating HOBr at sites of infection and inflammation. Both HOBr and bromamines/bromamides have the potential to react with superoxide radicals to form additional radicals that may contribute to inflammatory tissue damage.


Assuntos
Bromatos/metabolismo , Brometos/metabolismo , Neutrófilos/metabolismo , Superóxidos/metabolismo , Bromatos/química , Brometos/química , Humanos , Fenilacetatos/química , Fenilacetatos/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Superóxido Dismutase/metabolismo , Taurina/análogos & derivados , Taurina/metabolismo
5.
Biochemistry ; 47(31): 8237-45, 2008 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-18605737

RESUMO

Plasmalogens, which contain a vinyl ether bond, are major phospholipids of the plasma membranes of endothelial and vascular smooth muscle cells and cardiac myocytes. These lipids, in contrast to other phospholipids, have been reported to be targets of HOCl/HOBr generated by myeloperoxidase, with elevated levels of the products of these reactions (alpha-chloro/alpha-bromo aldehydes and unsaturated lysophospholipids) having been detected in human atherosclerotic lesions. The reason(s) for the targeting of this lipid class, over other phospholipids, is poorly understood, and is examined here. It is shown that HOCl and HOBr react with a model vinyl ether (ethylene glycol vinyl ether) 200-300-fold faster ( k = 1.6 x 10 (3) and 3.5 x 10 (6) M (-1) s (-1), respectively) than with aliphatic alkenes (models of phospholipids). True plasmalogens react ca. 20-fold slower than the models. Chloramines and bromamines (from reaction of HOCl/HOBr with primary amines and alpha-amino groups) also react with vinyl ethers, unlike aliphatic alkenes, with k = 10 (-3)-10 (2) M (-1) s (-1) for chloramines (with the His side chain chloramine being the most reactive, k = 172 M (-1) s (-1)) and k = 10 (3)-10 (4) M (-1) s (-1) for bromamines. The bromamine rate constants are typically 10 (5)-10 (6) larger than those of the chloramines. Intermolecular vinyl ether oxidation by phospholipid headgroup bromamines can also occur. These kinetic data indicate that plasmalogens are significantly more susceptible to oxidation than the aliphatic alkenes of phospholipids, thereby rationalizing the detection of products from the former, but not the latter, in human atherosclerotic lesions.


Assuntos
Oxidantes/química , Peroxidase/metabolismo , Plasmalogênios/química , Compostos de Vinila/química , Bromatos/química , Bromatos/metabolismo , Brometos/química , Cloraminas/química , Cromatografia Líquida de Alta Pressão , Ácido Hipocloroso/química , Ácido Hipocloroso/metabolismo , Cinética , Oxidantes/metabolismo
6.
Chem Res Toxicol ; 20(12): 1980-8, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18047295

RESUMO

Hypohalous acids are generated from the oxidation of halide ions by myeloperoxidase and eosinophil peroxidase in the presence of H2O2. These oxidants are potent antibacterial agents, but excessive production can result in host tissue damage, with this implicated in a number of human pathologies. Rate constants for HOCl with lipid components and antioxidants have been established. Here, the corresponding reactions of HOBr have been examined to determine whether this species shows similar reactivity. The second-order rate constants for the reaction of HOBr with 3-pentenoic acid and sorbate, models of unsaturated lipids, are 1.1x10(4) and 1.3x10(3) M(-1) s(-1), respectively, while those for reaction of HOBr with phosphoryl-serine and phosphoryl-ethanolamine are ca. 10(6) M(-1) s(-1). The second-order rate constants (M(-1) s(-1)) for reactions of HOBr with Trolox (6.4x10(4)), hydroquinone (2.4x10(5)), and ubiquinol-0 (2.5x10(6)) were determined, as models of the lipid-soluble antioxidants, alpha-tocopherol, and ubiquinol-10; all of these rate constants are ca. 50-2000-fold greater than for HOCl. In contrast, the second-order rate constants for the reaction of HOBr with the water-soluble antioxidants, ascorbate and urate, are ca. 10(6) M(-1) s(-1) and closer in magnitude to those for HOCl. Kinetic models have been developed to predict the sites of HOBr attack on low-density lipoproteins. The data obtained indicate that HOBr reacts to a much greater extent with fatty acid side chains and lipid-soluble antioxidants than HOCl; this has important implications for HOBr-mediated damage to cells and lipoproteins.


Assuntos
Antioxidantes/química , Bromatos/farmacologia , Lipoproteínas LDL/química , Antioxidantes/metabolismo , Bromatos/metabolismo , Cromatografia Líquida de Alta Pressão , Cinética , Lipoproteínas LDL/metabolismo , Modelos Químicos , Solubilidade
7.
J Org Chem ; 70(18): 7353-63, 2005 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-16122259

RESUMO

[reaction: see text] An efficient synthesis of dityrosine and the first syntheses of the tyrosine trimers trityrosine and pulcherosine have been achieved. Protected 3-iodotyrosine underwent tandem Miyaura borylation-Suzuki coupling to give protected dityrosine. The choice of benzyl carbamate, ester, and ether protecting groups enabled a one-step global deprotection to give dityrosine. Suzuki coupling of protected 3,5-diiodotyrosine and tyrosine-3-boronic acid derivatives gave the corresponding trityrosine, but in low yield. However, use of a potassium tyrosine-3-trifluoroborate derivative in place of the corresponding pinacol boronate ester, in combination with protecting group variation, gave protected trityrosine in good yield. Access to pulcherosine was achieved through copper-catalyzed coupling of phenylalanine-4-boronic acid and 4-O-protected dopa derivatives to give an isodityrosine derivative. Selective halogenation followed by Suzuki coupling with the potassium tyrosine-3-trifluoroborate gave protected pulcherosine. Global deprotection of the protected trityrosine and pulcherosine derivatives completed the first syntheses of the corresponding tris-alpha-amino acids.


Assuntos
Tirosina/análogos & derivados , Tirosina/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA