Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Trends Ecol Evol ; 39(4): 328-337, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38030538

RESUMO

Ecological and evolutionary studies are currently failing to achieve complete and consistent reporting of model-related uncertainty. We identify three key barriers - a focus on parameter-related uncertainty, obscure uncertainty metrics, and limited recognition of uncertainty propagation - which have led to gaps in uncertainty consideration. However, these gaps can be closed. We propose that uncertainty reporting in ecology and evolution can be improved through wider application of existing statistical solutions and by adopting good practice from other scientific fields. Our recommendations include greater consideration of input data and model structure uncertainties, field-specific uncertainty standards for methods and reporting, and increased uncertainty propagation through the use of hierarchical models.


Assuntos
Ecologia , Incerteza , Ecologia/métodos
2.
Biom J ; 65(8): e2300078, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37740134

RESUMO

Measurement error (ME) and missing values in covariates are often unavoidable in disciplines that deal with data, and both problems have separately received considerable attention during the past decades. However, while most researchers are familiar with methods for treating missing data, accounting for ME in covariates of regression models is less common. In addition, ME and missing data are typically treated as two separate problems, despite practical and theoretical similarities. Here, we exploit the fact that missing data in a continuous covariate is an extreme case of classical ME, allowing us to use existing methodology that accounts for ME via a Bayesian framework that employs integrated nested Laplace approximations (INLA) and thus to simultaneously account for both ME and missing data in the same covariate. As a useful by-product, we present an approach to handle missing data in INLA since this corresponds to the special case when no ME is present. In addition, we show how to account for Berkson ME in the same framework. In its broadest generality, the proposed joint Bayesian framework can thus account for Berkson ME, classical ME, and missing data, or any combination of these in the same or different continuous covariates of the family of regression models that are feasible with INLA. The approach is exemplified using both simulated and real data. We provide extensive and fully reproducible Supporting Information with thoroughly documented examples using R-INLA and inlabru.


Assuntos
Teorema de Bayes
3.
iScience ; 25(12): 105512, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36465136

RESUMO

Quantifying uncertainty associated with our models is the only way we can express how much we know about any phenomenon. Incomplete consideration of model-based uncertainties can lead to overstated conclusions with real-world impacts in diverse spheres, including conservation, epidemiology, climate science, and policy. Despite these potentially damaging consequences, we still know little about how different fields quantify and report uncertainty. We introduce the "sources of uncertainty" framework, using it to conduct a systematic audit of model-related uncertainty quantification from seven scientific fields, spanning the biological, physical, and political sciences. Our interdisciplinary audit shows no field fully considers all possible sources of uncertainty, but each has its own best practices alongside shared outstanding challenges. We make ten easy-to-implement recommendations to improve the consistency, completeness, and clarity of reporting on model-related uncertainty. These recommendations serve as a guide to best practices across scientific fields and expand our toolbox for high-quality research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA