Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(7)2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37509150

RESUMO

The importance of polyamines (PAs) for the central nervous system (CNS) is well known. Less clear, however, is where PAs in the brain are derived from. Principally, there are three possibilities: (i) intake by nutrition, release into the bloodstream, and subsequent uptake from CNS capillaries, (ii) production by parenchymatous organs, such as the liver, and again uptake from CNS capillaries, and (iii) uptake of precursors, such as arginine, from the blood and subsequent local biosynthesis of PAs within the CNS. The present investigation aimed to unequivocally answer the question of whether PAs, especially the higher ones like spermidine (SPD) and spermine (SPM), can or cannot be taken up into the brain from the bloodstream. For this purpose, a biotin-labelled analogue of spermine (B-X-SPM) was synthesized, characterized, and used to visualize its uptake into brain cells following application to acute brain slices, to the intraventricular space, or to the bloodstream. In acute brain slices there is strong uptake of B-X-SPM into protoplasmic and none in fibrous-type astrocytes. It is also taken up by neurons but to a lesser degree. Under in vivo conditions, astrocyte uptake of B-X-SPM from the brain interstitial fluid is also intense after intraventricular application. In contrast, following intracardial injection, there is no uptake from the bloodstream, indicating that the brain is completely dependent on the local synthesis of polyamines.


Assuntos
Poliaminas , Espermina , Espermidina , Encéfalo , Neurônios
2.
Biomedicines ; 11(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37189626

RESUMO

Polyamines (PAs) in the nervous system has a key role in regeneration and aging. Therefore, we investigated age-related changes in the expression of PA spermidine (SPD) in the rat retina. Fluorescent immunocytochemistry was used to evaluate the accumulation of SPD in retinae from rats of postnatal days 3, 21, and 120. Glial cells were identified using glutamine synthetase (GS), whereas DAPI, a marker of cell nuclei, was used to differentiate between retinal layers. SPD localization in the retina was strikingly different between neonates and adults. In the neonatal retina (postnatal day 3-P3), SPD is strongly expressed in practically all cell types, including radial glia and neurons. SPD staining showed strong co-localization with the glial marker GS in Müller Cells (MCs) in the outer neuroblast layer. In the weaning period (postnatal day 21-P21), the SPD label was strongly expressed in all MCs, but not in neurons. In early adulthood (postnatal day 120-P120), SPD was localized in MCs only and was co-localized with the glial marker GS. A decline in the expression of PAs in neurons was observed with age while glial cells accumulated SPD after the differentiation stage (P21) and during aging in MC cellular endfoot compartments.

3.
Biomolecules ; 12(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36551240

RESUMO

The interest in astrocytes, the silent brain cells that accumulate polyamines (PAs), is growing. PAs exert anti-inflammatory, antioxidant, antidepressant, neuroprotective, and other beneficial effects, including increasing longevity in vivo. Unlike neurons, astrocytes are extensively coupled to others via connexin (Cx) gap junctions (GJs). Although there are striking modulatory effects of PAs on neuronal receptors and channels, PA regulation of the astrocytic GJs is not well understood. We studied GJ-propagation using molecules of different (i) electrical charge, (ii) structure, and (iii) molecular weight. Loading single astrocytes with patch pipettes containing membrane-impermeable dyes, we observed that (i) even small molecules do not easily permeate astrocytic GJs, (ii) the ratio of the charge to weight of these molecules is the key determinant of GJ permeation, (iii) the PA spermine (SPM) induced the propagation of negatively charged molecules via GJs, (iv) while no effects were observed on propagation of macromolecules with net-zero charge. The GJ uncoupler carbenoxolone (CBX) blocked such propagation. Taken together, these findings indicate that SPM is essential for astrocytic GJ communication and selectively facilitates intracellular propagation via GJs for negatively charged molecules through glial syncytium.


Assuntos
Poliaminas , Espermina , Espermina/farmacologia , Poliaminas/farmacologia , Astrócitos , Junções Comunicantes , Células Gigantes
4.
Int J Mol Sci ; 23(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35897767

RESUMO

Endogenous anticonvulsant mechanisms represent a reliable and currently underdeveloped strategy against recurrent seizures and may recall novel original therapeutics. Here, we investigated whether the intensification of the astroglial Glu-GABA exchange mechanism by application of the GABA precursor putrescine (PUT) may be effective against convulsive and non-convulsive seizures. We explored the potential of PUT to inhibit spontaneous spike-and-wave discharges (SWDs) in WAG/Rij rats, a genetic model of absence epilepsy. Significant shortening of SWDs in response to intraperitoneally applied PUT has been observed, which could be antagonized by blocking GAT-2/3-mediated astrocytic GABA release with the specific inhibitor SNAP-5114. Direct application of exogenous GABA also reduced SWD duration, suggesting that PUT-triggered astroglial GABA release through GAT-2/3 may be a critical step in limiting seizure duration. PUT application also dose-dependently shortened seizure-like events (SLEs) in the low-[Mg2+] in vitro model of temporal lobe epilepsy. SNAP-5114 reversed the antiepileptic effect of PUT in the in vitro model as well, further confirming that PUT reduces seizure duration by triggering glial GABA release. In accordance, we observed that PUT specifically reduces the frequency of excitatory synaptic potentials, suggesting that it specifically acts at excitatory synapses. We also identified that PUT specifically eliminated the tonic depolarization-induced desynchronization of SLEs. Since PUT is an important source of glial GABA and we previously showed significant GABA release, it is suggested that the astroglial Glu-GABA exchange mechanism plays a key role in limiting ictal discharges, potentially opening up novel pathways to control seizure propagation and generalization.


Assuntos
Eletroencefalografia , Putrescina , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Modelos Animais de Doenças , Ratos , Convulsões , Ácido gama-Aminobutírico
5.
Biomolecules ; 12(4)2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35454090

RESUMO

Polyamines (PAs) are small, versatile molecules with two or more nitrogen-containing positively charged groups and provide widespread biological functions. Most of these aspects are well known and covered by quite a number of excellent surveys. Here, the present review includes novel aspects and questions: (1) It summarizes the role of most natural and some important synthetic PAs. (2) It depicts PA uptake from nutrition and bacterial production in the intestinal system following loss of PAs via defecation. (3) It highlights the discrepancy between the high concentrations of PAs in the gut lumen and their low concentration in the blood plasma and cerebrospinal fluid, while concentrations in cellular cytoplasm are much higher. (4) The present review provides a novel and complete scheme for the biosynthesis of Pas, including glycine, glutamate, proline and others as PA precursors, and provides a hypothesis that the agmatine pathway may rescue putrescine production when ODC knockout seems to be lethal (solving the apparent contradiction in the literature). (5) It summarizes novel data on PA transport in brain glial cells explaining why these cells but not neurons preferentially accumulate PAs. (6) Finally, it provides a novel and complete scheme for PA interconversion, including hypusine, putreanine, and GABA (unique gliotransmitter) as end-products. Altogether, this review can serve as an updated contribution to understanding the PA mystery.


Assuntos
Poliaminas , Espermina , Sistema Nervoso Central/metabolismo , Neuroglia/metabolismo , Poliaminas/metabolismo , Putrescina/metabolismo , Espermina/metabolismo
7.
Biomolecules ; 11(8)2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34439853

RESUMO

Polyamines (PAs) are polycationic biomolecules containing multiple amino groups. Patients with HIV-associated neurocognitive disorder (HAND) have high concentrations of the polyamine N-acetylated spermine in their brain and cerebral spinal fluid (CSF) and have increased PA release from astrocytes. These effects are due to the exposure to HIV-Tat. In healthy adult brain, PAs are accumulated but not synthesized in astrocytes, suggesting that PAs must enter astrocytes to be N-acetylated and released. Therefore, we tested if Cx43 hemichannels (Cx43-HCs) are pathways for PA flux in control and HIV-Tat-treated astrocytes. We used biotinylated spermine (b-SPM) to examine polyamine uptake. We found that control astrocytes and those treated with siRNA-Cx43 took up b-SPM, similarly suggesting that PA uptake is via a transporter/channel other than Cx43-HCs. Surprisingly, astrocytes pretreated with both HIV-Tat and siRNA-Cx43 showed increased accumulation of b-SPM. Using a novel polyamine transport inhibitor (PTI), trimer 44NMe, we blocked b-SPM uptake, showing that PA uptake is via a PTI-sensitive transport mechanism such as organic cation transporter. Our data suggest that Cx43 HCs are not a major pathway for b-SPM uptake in the condition of normal extracellular calcium concentration but may be involved in the release of PAs to the extracellular space during viral infection.


Assuntos
Astrócitos/metabolismo , Transporte Biológico/efeitos dos fármacos , Conexina 43/metabolismo , Infecções por HIV/metabolismo , Espermina/metabolismo , Animais , Astrócitos/virologia , HIV-1 , Camundongos , Camundongos Endogâmicos C57BL , Cultura Primária de Células
8.
Brain Sci ; 11(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33429955

RESUMO

Stroke is one of the leading causes of long-term disability. During ischemic stroke, glutamate is released, reuptake processes are impaired, and glutamate promotes excitotoxic neuronal death. Astrocytic glutamate transporter 1 (GLT-1) is the major transporter responsible for removing excess glutamate from the extracellular space. A translational activator of GLT-1, LDN/OSU 0212320 (LDN) has been previously developed with beneficial outcomes in epileptic animal models but has never been tested as a potential therapeutic for ischemic strokes. The present study evaluated the effects of LDN on stroke-associated brain injury. Male and female mice received LDN or vehicle 24 h before or 2 h after focal ischemia was induced in the sensorimotor cortex. Sensorimotor performance was determined using the Rung Ladder Walk and infarct area was assessed using triphenyltetrazolium chloride staining. Males treated with LDN exhibited upregulated GLT-1 protein levels, significantly smaller infarct size, and displayed better sensorimotor performance in comparison to those treated with vehicle only. In contrast, there was no upregulation of GLT-1 protein levels and no difference in infarct size or sensorimotor performance between vehicle- and LDN-treated females. Taken together, our results indicate that the GLT-1 translational activator LDN improved stroke outcomes in young adult male, but not female mice.

9.
Front Cell Neurosci ; 15: 787319, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069115

RESUMO

Accumulating evidence indicate that astrocytes are essential players of the excitatory and inhibitory signaling during normal and epileptiform activity via uptake and release of gliotransmitters, ions, and other substances. Polyamines can be regarded as gliotransmitters since they are almost exclusively stored in astrocytes and can be released by various mechanisms. The polyamine putrescine (PUT) is utilized to synthesize GABA, which can also be released from astrocytes and provide tonic inhibition on neurons. The polyamine spermine (SPM), synthesized form PUT through spermidine (SPD), is known to unblock astrocytic Cx43 gap junction channels and therefore facilitate astrocytic synchronization. In addition, SPM released from astrocytes may also modulate neuronal NMDA, AMPA, and kainate receptors. As a consequence, astrocytic polyamines possess the capability to significantly modulate epileptiform activity. In this study, we investigated different steps in polyamine metabolism and coupled GABA release to assess their potential to control seizure generation and maintenance in two different epilepsy models: the low-[Mg2+] model of temporal lobe epilepsy in vitro and in the WAG/Rij rat model of absence epilepsy in vivo. We show that SPM is a gliotransmitter that is released from astrocytes and significantly contributes to network excitation. Importantly, we found that inhibition of SPD synthesis completely prevented seizure generation in WAG/Rij rats. We hypothesize that this antiepileptic effect is attributed to the subsequent enhancement of PUT to GABA conversion in astrocytes, leading to GABA release through GAT-2/3 transporters. This interpretation is supported by the observation that antiepileptic potential of the Food and Drug Administration (FDA)-approved drug levetiracetam can be diminished by specifically blocking astrocytic GAT-2/3 with SNAP-5114, suggesting that levetiracetam exerts its effect by increasing surface expression of GAT-2/3. Our findings conclusively suggest that the major pathway through which astrocytic polyamines contribute to epileptiform activity is the production of GABA. Modulation of astrocytic polyamine levels, therefore, may serve for a more effective antiepileptic drug development in the future.

10.
Amino Acids ; 52(8): 1169-1180, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32816168

RESUMO

Polyamines (PAs), such as spermidine (SPD) and spermine (SPM), are essential to promote cell growth, survival, proliferation, and longevity. In the adult central nervous system (CNS), SPD and SPM are accumulated predominantly in healthy adult glial cells where PA synthesis is not present. To date, the accumulation and biosynthesis of PAs in developing astrocytes are not well understood. The purpose of the present study was to determine the contribution of uptake and/or synthesis of PAs using proliferation of neonatal astrocytes as an endpoint. We inhibited synthesis of PAs using α-difluoromethylornithine (DFMO; an inhibitor of the PA biosynthetic enzyme ornithine decarboxylase (ODC)) and inhibited uptake of PAs using trimer44NMe (PTI; a novel polyamine transport inhibitor). DFMO, but not PTI alone, blocked proliferation, suggesting that PA biosynthesis was present. Furthermore, exogenous administration of SPD rescued cell proliferation when PA synthesis was blocked by DFMO. When both synthesis and uptake of PAs were inhibited (DFMO + PTI), exogenous SPD no longer supported proliferation. These data indicate that neonatal astrocytes synthesize sufficient quantities of PAs de novo to support cell proliferation, but are also able to import exogenous PAs. This suggests that the PA uptake mechanism is present in both neonates as well as in adults and can support cell proliferation in neonatal astrocytes when ODC is blocked.


Assuntos
Astrócitos/metabolismo , Poliaminas/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Eflornitina , Poliaminas/antagonistas & inibidores , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Espermidina/metabolismo , Espermina/metabolismo
11.
Neuroreport ; 31(6): 450-455, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32168096

RESUMO

Protecting neurons from neurotoxicity is a job mainly performed by astrocytes through glutamate uptake and potassium buffering. These functions are aided principally by the Kir4.1 inwardly rectifying potassium channels located in the membrane of astrocytes. Astrocytes grown in hyperglycemic conditions have decreased levels of Kir4.1 potassium channels as well as impaired potassium and glutamate uptake. Previous studies performed in a human corneal epithelial cell injury model demonstrated a mechanism of regulation of Kir4.1 expression via the binding of microRNA-250 (miR-205) to the Kir4.1 3´ untranslated region. Our purpose is to test if astrocytes express miR-205 and elucidate its role in regulating Kir4.1 expression in astrocytes grown in hyperglycemic conditions. We used quantitative-PCR to assess the levels of miR-205 in astrocytes grown in high glucose (25 mM) medium compared to astrocytes grown in normal glucose (5 mM). We found that not only was miR-205 expressed in astrocytes grown in normal glucose, but its expression was increased up to six-fold in astrocytes grown in hyperglycemic conditions. Transfection of miR-205 mimic or inhibitor was performed to alter the levels of miR-205 in astrocytes followed by western blot to assess Kir4.1 channel levels in these cells. Astrocytes treated with miR-205 mimic had a 38.6% reduction of Kir4.1 protein levels compared to control (mock-transfected) cells. In contrast, astrocytes transfected with miR-205 inhibitor were significantly upregulated compared to mock by 47.4%. Taken together, our data indicate that miR-205 negatively regulates the expression of Kir4.1 in astrocytes grown in hyperglycemic conditions.


Assuntos
Astrócitos/metabolismo , Regulação da Expressão Gênica , Glucose/farmacologia , Hiperglicemia/metabolismo , MicroRNAs/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , Hiperglicemia/genética , MicroRNAs/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Ratos
12.
Brain Sci ; 10(2)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019062

RESUMO

Epilepsy, characterized by recurrent seizures, affects 1% of the general population. Interestingly, 25% of diabetics develop seizures with a yet unknown mechanism. Hyperglycemia downregulates inwardly rectifying potassium channel 4.1 (Kir4.1) in cultured astrocytes. Therefore, the present study aims to determine if downregulation of functional astrocytic Kir4.1 channels occurs in brains of type 2 diabetic mice and could influence hippocampal neuronal hyperexcitability. Using whole-cell patch clamp recording in hippocampal brain slices from male mice, we determined the electrophysiological properties of stratum radiatum astrocytes and CA1 pyramidal neurons. In diabetic mice, astrocytic Kir4.1 channels were functionally downregulated as evidenced by multiple characteristics including depolarized membrane potential, reduced barium-sensitive Kir currents and impaired potassium uptake capabilities of hippocampal astrocytes. Furthermore, CA1 pyramidal neurons from diabetic mice displayed increased spontaneous activity: action potential frequency was ≈9 times higher in diabetic compared with non-diabetic mice and small EPSC event frequency was significantly higher in CA1 pyramidal cells of diabetics compared to non-diabetics. These differences were apparent in control conditions and largely pronounced in response to the pro-convulsant 4-aminopyridine. Our data suggest that astrocytic dysfunction due to downregulation of Kir4.1 channels may increase seizure susceptibility by impairing astrocytic ability to maintain proper extracellular homeostasis.

13.
Sci Rep ; 9(1): 98, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30643185

RESUMO

Presently we report (i) excited state (exciton) propagation in a metal nanotrack over macroscopic distances, along with (ii) energy transfer from the nanotrack to adsorbed dye molecules. We measured the rates of both of these processes. We concluded that the effective speed of exciton propagation along the nanotrack is about 8 × 107 cm/s, much lower than the surface plasmon propagation speed of 1.4 × 1010 cm/s. We report that the transmitted energy yield depends on the nanotrack length, with the energy emitted from the surface much lower than the transmitted energy, i.e. the excited nanotrack mainly emits in its end zone. Our model thus assumes that the limiting step in the exciton propagation is the energy transfer between the originally prepared excitons and surface plasmons, with the rate constant of about 5.7 × 107 s-1. We also conclude that the energy transfer between the nanotrack and the adsorbed dye is limited by the excited-state lifetime in the nanotrack. Indeed, the measured characteristic buildup time of the dye emission is much longer than the characteristic energy transfer time to the dye of 81 ns, and thus must be determined by the excited state lifetime in the nanotrack. Indeed, the latter is very close to the characteristic buildup time of the dye emission. The data obtained are novel and very promising for a broad range of future applications.

14.
Exp Eye Res ; 173: 160-178, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29753728

RESUMO

It has been shown that mammalian retinal glial (Müller) cells act as living optical fibers that guide the light through the retinal tissue to the photoreceptor cells (Agte et al., 2011; Franze et al., 2007). However, for nonmammalian species it is unclear whether Müller cells also improve the transretinal light transmission. Furthermore, for nonmammalian species there is a lack of ultrastructural data of the retinal cells, which, in general, delivers fundamental information of the retinal function, i.e. the vision of the species. A detailed study of the cellular ultrastructure provides a basic approach of the research. Thus, the aim of the present study was to investigate the retina of the spectacled caimans at electron and light microscopical levels to describe the structural features. For electron microscopy, we used a superfast microwave fixation procedure in order to achieve more precise ultrastructural information than common fixation techniques. As result, our detailed ultrastructural study of all retinal parts shows structural features which strongly indicate that the caiman retina is adapted to dim light and night vision. Various structural characteristics of Müller cells suppose that the Müller cell may increase the light intensity along the path of light through the neuroretina and, thus, increase the sensitivity of the scotopic vision of spectacled caimans. Müller cells traverse the whole thickness of the neuroretina and thus may guide the light from the inner retinal surface to the photoreceptor cell perikarya and the Müller cell microvilli between the photoreceptor segments. Thick Müller cell trunks/processes traverse the layers which contain light-scattering structures, i.e., nerve fibers and synapses. Large Müller cell somata run through the inner nuclear layer and contain flattened, elongated Müller cell nuclei which are arranged along the light path and, thus, may reduce the loss of the light intensity along the retinal light path. The oblique arrangement of many Müller cell trunks/processes in the inner plexiform layer and the large Müller cell somata in the inner nuclear layer may suggest that light guidance through Müller cells increases the visual sensitivity. Furthermore, an adaptation of the caiman retina to low light levels is strongly supported by detailed ultrastructural data of other retinal parts, e.g. by (i) the presence of a guanine-based retinal tapetum, (ii) the rod dominance of the retina, (iii) the presence of photoreceptor cell nuclei, which penetrate the outer limiting membrane, (iv) the relatively low densities of photoreceptor and neuronal cells which is compensated by (v) the presence of rods with long and thick outer segments, that may increase the probability of photon absorption. According to a cell number analysis, the central and temporal areas of the dorsal tapetal retina, which supports downward prey detection in darker water, are the sites of the highest diurnal contrast/color vision, i.e. cone vision and of the highest retinal light sensitivity, i.e. rod vision.


Assuntos
Adaptação Ocular/fisiologia , Jacarés e Crocodilos , Visão Noturna/fisiologia , Retina/ultraestrutura , Animais , Contagem de Células , Feminino , Masculino , Microscopia Eletrônica , Células Fotorreceptoras de Vertebrados/ultraestrutura , Retina/fisiologia , Epitélio Pigmentado da Retina/ultraestrutura
15.
Neuroscience ; 384: 54-63, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29800717

RESUMO

A-kinase-anchoring proteins, AKAPs, are scaffolding proteins that associate with kinases and phosphatases, and direct them to a specific submembrane site to coordinate signaling events. AKAP150, a rodent ortholog of human AKAP79, has been extensively studied in neurons, but very little is known about the localization and function of AKAP150 in astrocytes, the major cell type in brain. Thus, in this study, we assessed the localization of AKAP150 in astrocytes and elucidated its role during physiological and ischemic conditions. Herein, we demonstrate that AKAP150 is localized in astrocytes and is up-regulated during ischemia both in vitro and in vivo. Knock-down of AKAP150 by RNAi depolarizes the astrocytic membrane potential and substantially reduces by 80% the ability of astrocytes to take up extracellular potassium during ischemic conditions. Therefore, upregulation of AKAP150 during ischemia preserves potassium conductance and the associated hyperpolarized membrane potential of astrocytes; properties of astrocytes needed to maintain extracellular brain homeostasis. Taken together, these data suggest that AKAP150 may play a pivotal role in the neuroprotective mechanism of astrocytes during pathological conditions.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Astrócitos/metabolismo , Isquemia Encefálica/metabolismo , Acidente Vascular Cerebral/metabolismo , Regulação para Cima , Animais , Masculino , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
16.
Exp Eye Res ; 173: 91-108, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29763583

RESUMO

In this study, we show the capability of Müller glial cells to transport light through the inverted retina of reptiles, specifically the retina of the spectacled caimans. Thus, confirming that Müller cells of lower vertebrates also improve retinal light transmission. Confocal imaging of freshly isolated retinal wholemounts, that preserved the refractive index landscape of the tissue, indicated that the retina of the spectacled caiman is adapted for vision under dim light conditions. For light transmission experiments, we used a setup with two axially aligned objectives imaging the retina from both sides to project the light onto the inner (vitreal) surface and to detect the transmitted light behind the retina at the receptor layer. Simultaneously, a confocal microscope obtained images of the Müller cells embedded within the vital tissue. Projections of light onto several representative Müller cell trunks within the inner plexiform layer, i.e. (i) trunks with a straight orientation, (ii) trunks which are formed by the inner processes and (iii) trunks which get split into inner processes, were associated with increases in the intensity of the transmitted light. Projections of light onto the periphery of the Müller cell endfeet resulted in a lower intensity of transmitted light. In this way, retinal glial (Müller) cells support dim light vision by improving the signal-to-noise ratio which increases the sensitivity to light. The field of illuminated photoreceptors mainly include rods reflecting the rod dominance of the of tissue. A subpopulation of Müller cells with downstreaming cone cells led to a high-intensity illumination of the cones, while the surrounding rods were illuminated by light of lower intensity. Therefore, Müller cells that lie in front of cones may adapt the intensity of the transmitted light to the different sensitivities of cones and rods, presumably allowing a simultaneous vision with both receptor types under dim light conditions.


Assuntos
Jacarés e Crocodilos/fisiologia , Células Ependimogliais/fisiologia , Luz , Visão Noturna/fisiologia , Retina/fisiologia , Visão Ocular/fisiologia , Animais , Proteínas do Olho/metabolismo , Feminino , Masculino , Microscopia Confocal , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia
17.
Neuroreport ; 28(4): 208-213, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28134630

RESUMO

Changes in the regulation, formation, and gating of connexin-based gap junction channels occur in various disorders. It has been shown that H and Ca are involved in the regulation of gap junctional communication. Ischemia-induced intracellular acidification and Ca overload lead to closure of gap junctions and inhibit an exchange by ions and small molecules throughout the network of cells in the heart, brain, and other tissues. In this study, we examined the role of the polyamines in the regulation of connexin 43 (Cx43)-based gap junction channels under elevated intracellular concentrations of hydrogen ([H]i) and calcium ([Ca]i) ions. Experiments, conducted in Novikoff and A172 human glioblastoma cells, which endogenously express Cx43, showed that polyamines prevent downregulation of Cx43-mediated gap junctional communication caused by elevated [Ca]i and [H]i, accompanying ischemic and other pathological conditions. siRNA knockdown of Cx43 significantly reduces gap junctional communication, indicating that Cx43 gap junctions are the targets for spermine regulation.


Assuntos
Conexina 43/metabolismo , Junções Comunicantes/fisiologia , Neurônios/fisiologia , Poliaminas/administração & dosagem , Acidose , Animais , Cálcio , Linhagem Celular Tumoral , Junções Comunicantes/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Hipercalcemia , Neurônios/metabolismo , Ratos , Espermina/administração & dosagem
18.
J Biol Chem ; 291(14): 7716-26, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26867573

RESUMO

TheKCNJ10gene encoding Kir4.1 contains numerous SNPs whose molecular effects remain unknown. We investigated the functional consequences of uncharacterized SNPs (Q212R, L166Q, and G83V) on homomeric (Kir4.1) and heteromeric (Kir4.1-Kir5.1) channel function. We compared these with previously characterized EAST/SeSAME mutants (G77R and A167V) in kidney-derived tsA201 cells and in glial cell-derived C6 glioma cells. The membrane potentials of tsA201 cells expressing G77R and G83V were significantly depolarized as compared with WTKir4.1, whereas cells expressing Q212R, L166Q, and A167V were less affected. Furthermore, macroscopic currents from cells expressing WTKir4.1 and Q212R channels did not differ, whereas currents from cells expressing L166Q, G83V, G77R, and A167V were reduced. Unexpectedly, L166Q current responses were rescued when co-expressed with Kir5.1. In addition, we observed notable differences in channel activity between C6 glioma cells and tsA201 cells expressing L166Q and A167V, suggesting that there are underlying differences between cell lines in terms of Kir4.1 protein synthesis, stability, or expression at the surface. Finally, we determined spermine (SPM) sensitivity of these uncharacterized SNPs and found that Q212R-containing channels displayed reduced block by 1 µmSPM. At 100 µmSPM, the block was equal to or greater than WT, suggesting that the greater driving force of SPM allowed achievement of steady state. In contrast, L166Q-Kir5.1 channels achieved a higher block than WT, suggesting a more stable interaction of SPM in the deep pore cavity. Overall, our data suggest that G83V, L166Q, and Q212R residues play a pivotal role in controlling Kir4.1 channel function.


Assuntos
Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Substituição de Aminoácidos , Animais , Linhagem Celular Tumoral , Canais de Potássio Corretores do Fluxo de Internalização/genética , Ratos , Canal Kir5.1
19.
J Neurosci ; 35(41): 13827-35, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26468182

RESUMO

Initial biophysical studies on glial cells nearly 50 years ago identified these cells as being electrically silent. These first studies also demonstrated a large K(+) conductance, which led to the notion that glia may regulate extracellular K(+) levels homeostatically. This view has now gained critical support from the study of multiple disease models discussed herein. Dysfunction of a major astrocyte K(+) channel, Kir4.1, appears as an early pathological event underlying neuronal phenotypes in several neurodevelopmental and neurodegenerative diseases. An expanding list of other astrocyte ion channels, including the calcium-activated ion channel BEST-1, hemichannels, and two-pore domain K(+) channels, all contribute to astrocyte biology and CNS function and underpin new forms of crosstalk between neurons and glia. Once considered merely the glue that holds the brain together, it is now increasingly recognized that astrocytes contribute in several fundamental ways to neuronal function. Emerging new insights and future perspectives of this active research area are highlighted within. SIGNIFICANCE STATEMENT: The critical role of astrocyte potassium channels in CNS homeostasis has been reemphasized by recent studies conducted in animal disease models. Emerging evidence also supports the signaling role mediated by astrocyte ion channels such as BEST1, hemichannels, and two-pore channels, which enable astrocytes to interact with neurons and regulate synaptic transmission and plasticity. This minisymposium highlights recent developments and future perspectives of these research areas.


Assuntos
Homeostase , Canais Iônicos/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Animais , Biofísica , Humanos , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/fisiopatologia
20.
PLoS One ; 10(6): e0131059, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26098895

RESUMO

Glioblastoma is one of the most aggressive and fatal brain cancers due to the highly invasive nature of glioma cells. Microglia infiltrate most glioma tumors and, therefore, make up an important component of the glioma microenvironment. In the tumor environment, microglia release factors that lead to the degradation of the extracellular matrix and stimulate signaling pathways to promote glioma cell invasion. In the present study, we demonstrated that microglia can promote glioma migration through a mechanism independent of extracellular matrix degradation. Using western blot analysis, we found upregulation of proline rich tyrosine kinase 2 (Pyk2) protein phosphorylated at Tyr579/580 in glioma cells treated with microglia conditioned medium. This upregulation occurred in rodent C6 and GL261 as well as in human glioma cell lines with varying levels of invasiveness (U-87MG, A172, and HS683). siRNA knock-down of Pyk2 protein and pharmacological blockade by the Pyk2/focal-adhesion kinase (FAK) inhibitor PF-562,271 reversed the stimulatory effect of microglia on glioma migration in all cell lines. A lower concentration of PF-562,271 that selectively inhibits FAK, but not Pyk2, did not have any effect on glioma cell migration. Moreover, with the use of the CD11b-HSVTK microglia ablation mouse model we demonstrated that elimination of microglia in the implanted tumors (GL261 glioma cells were used for brain implantation) by the local in-tumor administration of Ganciclovir, significantly reduced the phosphorylation of Pyk2 at Tyr579/580 in implanted tumor cells. Taken together, these data indicate that microglial cells activate glioma cell migration/dispersal through the pro-migratory Pyk2 signaling pathway in glioma cells.


Assuntos
Neoplasias Encefálicas/fisiopatologia , Quinase 2 de Adesão Focal/fisiologia , Glioma/fisiopatologia , Microglia/fisiologia , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Quinase 2 de Adesão Focal/antagonistas & inibidores , Quinase 2 de Adesão Focal/genética , Técnicas de Silenciamento de Genes , Glioma/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Invasividade Neoplásica/patologia , Invasividade Neoplásica/fisiopatologia , Ratos , Transdução de Sinais/fisiologia , Microambiente Tumoral/fisiologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...