Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 65(1): 271-284, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34967607

RESUMO

c(RGDyK)-based conjugates of gemcitabine (GEM) with the carbonate and carbamate linkages in the 6-OH group of GEM were synthesized for the targeted delivery of GEM to integrin αvß3, overexpressing cancer cells to increase the stability as well as the tumor delivery of GEM and minimize common side effects associated with GEM treatment. Competitive cell uptake experiments demonstrated that conjugate TC113 could be internalized by A549 cells through integrin αvß3. Among the synthesized conjugates, TC113 bearing the carbamate linker was stable in human plasma and was further assessed in an in vivo pharmacokinetic study. TC113 appeared to be relatively stable, releasing GEM slowly into blood, while it showed potent antiproliferative properties against WM266.4 and A549 cells. The encouraging data presented in this study with respect to TC113 provide a promising keystone for further investigation of this GEM conjugate with potential future clinical applications.


Assuntos
Desoxicitidina/análogos & derivados , Integrinas/química , Neoplasias Pulmonares/tratamento farmacológico , Peptídeos Cíclicos/química , Células A549 , Animais , Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/farmacologia , Proliferação de Células , Desoxicitidina/química , Desoxicitidina/farmacologia , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Gencitabina
2.
Cancers (Basel) ; 13(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920884

RESUMO

Pioneering studies on tumor and immune cell interactions have highlighted immune checkpoint inhibitors (ICIs) as revolutionizing interventions for the management of NSCLC, typically combined with traditional MTD chemotherapies, which usually lead to toxicities and resistance to treatment. Alternatively, MTR chemotherapy is based on the daily low dose administration of chemotherapeutics, preventing tumor growth indirectly by targeting the tumor microenvironment. The effects of MTR administration of an oral prodrug of gemcitabine (OralGem), alone or with anti-PD1, were evaluated. Relevant in vitro and in vivo models were developed to investigate the efficacy of MTR alone or with immunotherapy and the potential toxicities associated with each dosing scheme. MTR OralGem restricted tumor angiogenesis by regulating thrombospondin-1 (TSP-1) and vascular endothelial growth factor A (VEGFA) expression. MTR OralGem enhanced antitumor immunity by increasing T effector responses and cytokine release, concomitant with dampening regulatory T cell populations. Promising pharmacokinetic properties afforded minimized blood and thymus toxicity and favorable bioavailability upon MTR administration compared to MTD. The combination of MTR OralGem with immunotherapy was shown to be highly efficacious and tolerable, illuminating it as a strong candidate therapeutic scheme for the treatment of NSCLC.

3.
Stem Cells Dev ; 26(16): 1214-1222, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28557659

RESUMO

Neural stem cells have been considered as a source of stem cells that can be used for cell replacement therapies in neurodegenerative diseases, as they can be isolated and expanded in vitro and can be used for autologous grafting. However, due to low percentages of survival and varying patterns of differentiation, strategies that will enhance the efficacy of transplantation are under scrutiny. In this article, we have examined whether alterations in Geminin's expression, a protein that coordinates the balance between self-renewal and differentiation, can improve the properties of stem cells transplanted in 6-OHDA hemiparkinsonian mouse model. Our results indicate that, in the absence of Geminin, grafted cells differentiating into dopaminergic neurons were decreased, while an increased number of oligodendrocytes were detected. The number of proliferating multipotent cells was not modified by the absence of Geminin. These findings encourage research related to the impact of Geminin on transplantations for neurodegenerative disorders, as an important molecule in influencing differentiation decisions of the cells composing the graft.


Assuntos
Células-Tronco Adultas/citologia , Geminina/genética , Células-Tronco Neurais/citologia , Neurogênese , Doença de Parkinson/terapia , Transplante de Células-Tronco , Células-Tronco Adultas/metabolismo , Células-Tronco Adultas/transplante , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Proliferação de Células , Células Cultivadas , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Geminina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/transplante , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Oxidopamina/toxicidade , Doença de Parkinson/etiologia
4.
Mol Pharm ; 14(3): 674-685, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28099809

RESUMO

Gemcitabine is a clinically established anticancer agent potent in various solid tumors but limited by its rapid metabolic inactivation and off-target toxicity. We have previously generated a metabolically superior to gemcitabine molecule (GSG) by conjugating gemcitabine to a gonadotropin releasing hormone receptor (GnRH-R) ligand peptide and showed that GSG was efficacious in a castration resistant prostate cancer (CRPC) animal model. The current article provides an in-depth metabolic and mechanistic study of GSG, coupled with toxicity assays that strengthen the potential role of GSG in the clinic. LC-MS/MS based approaches were employed to delineate the metabolism of GSG, its mechanistic cellular uptake, and release of gemcitabine and to quantitate the intracellular levels of gemcitabine and its metabolites (active dFdCTP and inactive dFdU) resulting from GSG. The GnRH-R agonistic potential of GSG was investigated by quantifying the testosterone levels in animals dosed daily with GSG, while an in vitro colony forming assay together with in vivo whole blood measurements were performed to elucidate the hematotoxicity profile of GSG. Stability showed that the major metabolite of GSG is a more stable nonapeptide that could prolong gemcitabine's bioavailability. GSG acted as a prodrug and offered a metabolic advantage compared to gemcitabine by generating higher and steadier levels of dFdCTP/dFdU ratio, while intracellular release of gemcitabine from GSG in DU145 CRPC cells depended on nucleoside transporters. Daily administrations in mice showed that GSG is a potent GnRH-R agonist that can also cause testosterone ablation without any observed hematotoxicity. In summary, GSG could offer a powerful and unique pharmacological approach to prostate cancer treatment: a single nontoxic molecule that can be used to reach the tumor site selectively with superior to gemcitabine metabolism, biodistribution, and safety while also agonistically ablating testosterone levels.


Assuntos
Desoxicitidina/análogos & derivados , Peptídeos/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Animais , Desoxicitidina/farmacologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pró-Fármacos/farmacologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Ratos Wistar , Receptores LHRH/metabolismo , Distribuição Tecidual/fisiologia , Células Tumorais Cultivadas , Gencitabina
5.
Neurogenesis (Austin) ; 3(1): e1172747, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27606337

RESUMO

Ependymal cells are multiciliated cells located in the wall of the lateral ventricles of the adult mammalian brain and are key components of the subependymal zone niche, where adult neural stem cells reside. Through the movement of their motile cilia, ependymal cells control the cerebrospinal fluid flow within the ventricular system from which they receive secreted molecules and morphogens controlling self-renewal and differentiation decisions of adult neural stem cells. Multiciliated ependymal cells become fully differentiated at postnatal stages however they are specified during mid to late embryogenesis from a population of radial glial cells. Here we discuss recent findings suggesting that 2 novel molecules, Mcidas and GemC1/Lynkeas are key players on radial glial specification to ependymal cells. Both proteins were initially described as cell cycle regulators revealing sequence similarity to Geminin. They are expressed in radial glial cells committed to the ependymal cell lineage during embryogenesis, while overexpression and knock down experiments showed that are sufficient and necessary for ependymal cell generation. We propose that Mcidas and GemC1/Lynkeas are key components of the molecular cascade that promotes radial glial cells fate commitment toward multiciliated ependymal cell lineage operating upstream of c-Myb and FoxJ1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...