Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(18): 10376-10395, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37125463

RESUMO

Cuboidal [Fe4S4] clusters are ubiquitous cofactors in biological redox chemistry. In the [Fe4S4]1+ state, pairwise spin coupling gives rise to six arrangements of the Fe valences ("valence isomers") among the four Fe centers. Because of the magnetic complexity of these systems, it has been challenging to understand how a protein's active site dictates both the arrangement of the valences in the ground state as well as the population of excited-state valence isomers. Here, we show that the ground-state valence isomer landscape can be simplified from a six-level system in an asymmetric protein environment to a two-level system by studying the problem in synthetic [Fe4S4]1+ clusters with solution C3v symmetry. This simplification allows for the energy differences between valence isomers to be quantified (in some cases with a resolution of <0.1 kcal/mol) by simultaneously fitting the VT NMR and solution magnetic moment data. Using this fitting protocol, we map the excited-state landscape for a range of clusters of the form [(SIMes)3Fe4S4-X/L]n, (SIMes = 1,3-dimesityl-imidazol-4,5-dihydro-2-ylidene; n = 0 for anionic, X-type ligands and n = +1 for neutral, L-type ligands) and find that a single ligand substitution can alter the relative ground-state energies of valence isomers by at least 103 cm-1. On this basis, we suggest that one result of "non-canonical" amino acid ligation in Fe-S proteins is the redistribution of the valence electrons in the manifold of thermally populated excited states.

2.
Proc Natl Acad Sci U S A ; 120(6): e2210528120, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36719911

RESUMO

Nature employs weak-field metalloclusters to support a wide range of biological processes. The most ubiquitous metalloclusters are the cuboidal Fe-S clusters, which are comprised of Fe sites with locally high-spin electronic configurations. Such configurations enhance rates of ligand exchange and imbue the clusters with a degree of structural plasticity that is increasingly thought to be functionally relevant. Here, we examine this phenomenon using isotope tracing experiments. Specifically, we demonstrate that synthetic [Fe4S4] and [MoFe3S4] clusters exchange their Fe atoms with Fe2+ ions dissolved in solution, a process that involves the reversible cleavage and reformation of every Fe-S bond in the cluster core. This exchange is facile-in most cases occurring at room temperature on the timescale of minutes-and documented over a range of cluster core oxidation states and terminal ligation patterns. In addition to suggesting a highly dynamic picture of cluster structure, these results provide a method for isotopically labeling pre-formed clusters with spin-active nuclei, such as 57Fe. Such a protocol is demonstrated for the radical S-adenosyl-l-methionine enzyme, RlmN.

3.
Inorg Chem ; 61(23): 8955-8965, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35654478

RESUMO

Reaction of the uranium(III) bis(amidinate) aryl complex {TerphC(NiPr)2}2U(Terph) (2, where Terph = 4,4″-di-tert-butyl-m-terphenyl-2'-yl) with a strong reductant enabled isolation of isomeric uranium(III) bis(amidinate) aryl product {TerphC(NiPr)2}2U(Terph*) (3, where Terph* = 4,4″-di-tert-butyl-m-terphenyl-4'-yl). In terms of connectivity, 3 differs from 2 only in the positions of the U-C and C-H bonds on the central aryl ring of the m-terphenyl-based ligand. A deuterium labeling study ruled out mechanisms for this isomerization involving intermolecular abstraction or deprotonation of the ligand C-H bonds activated during the reaction. Due to the complexity of this rapid, heterogeneous reaction, experimental studies could not further distinguish between two different intramolecular C-H activation mechanisms. However, high-level computational studies were consistent with a mechanism that included two sets of unimolecular, mononuclear C-H oxidative addition and reductive elimination steps involving uranium(II/IV).

4.
Inorg Chem ; 59(23): 17259-17267, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33226227

RESUMO

A lithiated m-terphenyl ligand bearing fluorine atoms at the ortho positions of the flanking aryl rings was synthesized and characterized using single crystal X-ray diffraction, variable-temperature multinuclear NMR spectroscopy, and computational methods. Changes in 1JC,F on coordination to lithium as a spectroscopic observable parametrizing the strength of the C-F···Li interaction are described, and a general, qualitative relationship between C-F bond lengths, Δ1JC,F values, and the extent of C-F bond activation as a result of Lewis acid coordination is proposed.

5.
Inorg Chem ; 58(24): 16629-16641, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31769982

RESUMO

Addition of the potassium salt of the bulky tetra(isopropyl)cyclopentadienyl (CpiPr4) ligand to UI3(1,4-dioxane)1.5 results in the formation of the bent metallocene uranium(III) complex (CpiPr4)2UI (1), which is then used to obtain the uranium(IV) and uranium(III) dihalides (CpiPr4)2UIVX2 (2-X) and [cation][(CpiPr4)2UIIIX2] (3-X, [cation]+ = [Cp*2Co]+, [Et4N]+, or [Me4N]+) as mononuclear, donor-free complexes, for X- = F-, Cl-, Br-, and I-. Interestingly, reaction of 1 with chloride and cyanide salts of alkali metal ions leads to isolation of the chloride- and cyanide-bridged coordination solids [(CpiPr4)2U(µ-Cl)2Cs]n (4-Cl) and [(CpiPr4)2U(µ-CN)2Na(OEt2)2]n (4-CN). Abstraction of the iodide ligand from 1 further enables isolation of the "base-free" metallocenium cation salt [(CpiPr4)2U][B(C6F5)4] (5) and its DME adduct [(CpiPr4)2U(DME)][B(C6F5)4] (5-DME). Solid-state structures of all of the compounds, determined by X-ray crystallography, facilitate a detailed analysis of the effect of changing oxidation state or halide ligand on the molecular structure. NMR spectroscopy, X-ray crystallography, cyclic voltammetry, and UV-visible spectroscopy studies of 2-X and 3-X further reveal that the difluoride species in both series exhibit properties that differ significantly from trends observed among the other dihalides, such as a substantial negative shift in the potential of the [(CpiPr4)2UX2] uranium(III/IV) redox couple. Magnetic characterization of 1 and 5 reveals that both compounds exhibit slow magnetic relaxation of molecular origin under applied magnetic fields; this process is dominated by a Raman relaxation mechanism.

6.
Dalton Trans ; 47(1): 96-104, 2018 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-29177271

RESUMO

Straightforward syntheses are provided for the m-terphenyl dithiocarboxylic acid 2,6-(C6H4-4-tBu)2C6H3CS2H (TerphCS2H, 2) and its lithium and potassium salts, TerphCS2Li(Et2O)2 and TerphCS2K (1·Et2O and 4, respectively). These compounds can be isolated in good yields on multi-gram scales starting from Terph-I without isolating intermediates. Salt metathesis and protonolysis reactions provided access to the homoleptic actinide(iv) complexes (TerphCS2)4An (An = Th (5) and U (6)). Electrochemical and reactivity studies revealed that the dithiocarboxylate ligand is incompatible with U(iii). The homoleptic lanthanum(iii) complex (TerphCS2)3La and its η6-toluene adduct (7 and 7·tol, respectively) were also structurally characterized. Binding of toluene to 7 was shown to displace intramolecular La-Carene close contacts that are facilitated by a distortion from the usual geometry of bound dithiocarboxylate ligands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...