Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Exp Immunol ; 212(3): 249-261, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36807499

RESUMO

T cells are important in preventing severe disease from SARS-CoV-2, but scalable and field-adaptable alternatives to expert T-cell assays are needed. The interferon-gamma release assay QuantiFERON platform was developed to detect T-cell responses to SARS-CoV-2 from whole blood with relatively basic equipment and flexibility of processing timelines. Forty-eight participants with different infection and vaccination backgrounds were recruited. Whole blood samples were analysed using the QuantiFERON SARS-CoV-2 assay in parallel with the well-established 'Protective Immunity from T Cells in Healthcare workers' (PITCH) ELISpot, which can evaluate spike-specific T-cell responses. The primary aims of this cross-sectional observational cohort study were to establish if the QuantiFERON SARS-Co-V-2 assay could discern differences between specified groups and to assess the sensitivity of the assay compared with the PITCH ELISpot. The QuantiFERON SARS-CoV-2 distinguished acutely infected individuals (12-21 days post positive PCR) from naïve individuals (P < 0.0001) with 100% sensitivity and specificity for SARS-CoV-2 T cells, whilst the PITCH ELISpot had reduced sensitivity (62.5%) for the acute infection group. Sensitivity with QuantiFERON for previous infection was 12.5% (172-444 days post positive test) and was inferior to the PITCH ELISpot (75%). Although the QuantiFERON assay could discern differences between unvaccinated and vaccinated individuals (55-166 days since second vaccination), the latter also had reduced sensitivity (44.4%) compared to the PITCH ELISpot (66.6%). The QuantiFERON SARS-CoV-2 assay showed potential as a T- cell evaluation tool soon after SARS-CoV-2 infection but has lower sensitivity for use in reliable evaluation of vaccination or more distant infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Estudos Transversais , Testes de Liberação de Interferon-gama , Vacinação , Anticorpos Antivirais
2.
Nat Commun ; 13(1): 1251, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273178

RESUMO

The trajectories of acquired immunity to severe acute respiratory syndrome coronavirus 2 infection are not fully understood. We present a detailed longitudinal cohort study of UK healthcare workers prior to vaccination, presenting April-June 2020 with asymptomatic or symptomatic infection. Here we show a highly variable range of responses, some of which (T cell interferon-gamma ELISpot, N-specific antibody) wane over time, while others (spike-specific antibody, B cell memory ELISpot) are stable. We use integrative analysis and a machine-learning approach (SIMON - Sequential Iterative Modeling OverNight) to explore this heterogeneity. We identify a subgroup of participants with higher antibody responses and interferon-gamma ELISpot T cell responses, and a robust trajectory for longer term immunity associates with higher levels of neutralising antibodies against the infecting (Victoria) strain and also against variants B.1.1.7 (alpha) and B.1.351 (beta). These variable trajectories following early priming may define subsequent protection from severe disease from novel variants.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Antivirais , Humanos , Estudos Longitudinais , Glicoproteína da Espícula de Coronavírus
3.
Cell Host Microbe ; 30(1): 53-68.e12, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34921776

RESUMO

Alpha-B.1.1.7, Beta-B.1.351, Gamma-P.1, and Delta-B.1.617.2 variants of SARS-CoV-2 express multiple mutations in the spike protein (S). These may alter the antigenic structure of S, causing escape from natural or vaccine-induced immunity. Beta is particularly difficult to neutralize using serum induced by early pandemic SARS-CoV-2 strains and is most antigenically separated from Delta. To understand this, we generated 674 mAbs from Beta-infected individuals and performed a detailed structure-function analysis of the 27 most potent mAbs: one binding the spike N-terminal domain (NTD), the rest the receptor-binding domain (RBD). Two of these RBD-binding mAbs recognize a neutralizing epitope conserved between SARS-CoV-1 and -2, while 18 target mutated residues in Beta: K417N, E484K, and N501Y. There is a major response to N501Y, including a public IgVH4-39 sequence, with E484K and K417N also targeted. Recognition of these key residues underscores why serum from Beta cases poorly neutralizes early pandemic and Delta viruses.


Assuntos
Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Células Cultivadas , Chlorocebus aethiops , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Testes de Neutralização/métodos , Ligação Proteica/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero
4.
Cell ; 184(23): 5699-5714.e11, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34735795

RESUMO

Extension of the interval between vaccine doses for the BNT162b2 mRNA vaccine was introduced in the United Kingdom to accelerate population coverage with a single dose. At this time, trial data were lacking, and we addressed this in a study of United Kingdom healthcare workers. The first vaccine dose induced protection from infection from the circulating alpha (B.1.1.7) variant over several weeks. In a substudy of 589 individuals, we show that this single dose induces severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibody (NAb) responses and a sustained B and T cell response to the spike protein. NAb levels were higher after the extended dosing interval (6-14 weeks) compared with the conventional 3- to 4-week regimen, accompanied by enrichment of CD4+ T cells expressing interleukin-2 (IL-2). Prior SARS-CoV-2 infection amplified and accelerated the response. These data on dynamic cellular and humoral responses indicate that extension of the dosing interval is an effective immunogenic protocol.


Assuntos
Vacinas contra COVID-19/imunologia , Vacinas Sintéticas/imunologia , Adulto , Idoso , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacina BNT162 , COVID-19/sangue , COVID-19/imunologia , COVID-19/virologia , Apresentação Cruzada/imunologia , Relação Dose-Resposta Imunológica , Etnicidade , Feminino , Humanos , Imunidade , Imunoglobulina G/imunologia , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Padrões de Referência , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Resultado do Tratamento , Adulto Jovem , Vacinas de mRNA
5.
PLoS Pathog ; 17(9): e1009804, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34529726

RESUMO

Prior studies have demonstrated that immunologic dysfunction underpins severe illness in COVID-19 patients, but have lacked an in-depth analysis of the immunologic drivers of death in the most critically ill patients. We performed immunophenotyping of viral antigen-specific and unconventional T cell responses, neutralizing antibodies, and serum proteins in critically ill patients with SARS-CoV-2 infection, using influenza infection, SARS-CoV-2-convalescent health care workers, and healthy adults as controls. We identify mucosal-associated invariant T (MAIT) cell activation as an independent and significant predictor of death in COVID-19 (HR = 5.92, 95% CI = 2.49-14.1). MAIT cell activation correlates with several other mortality-associated immunologic measures including broad activation of CD8+ T cells and non-Vδ2 γδT cells, and elevated levels of cytokines and chemokines, including GM-CSF, CXCL10, CCL2, and IL-6. MAIT cell activation is also a predictor of disease severity in influenza (ECMO/death HR = 4.43, 95% CI = 1.08-18.2). Single-cell RNA-sequencing reveals a shift from focused IFNα-driven signals in COVID-19 ICU patients who survive to broad pro-inflammatory responses in fatal COVID-19 -a feature not observed in severe influenza. We conclude that fatal COVID-19 infection is driven by uncoordinated inflammatory responses that drive a hierarchy of T cell activation, elements of which can serve as prognostic indicators and potential targets for immune intervention.


Assuntos
COVID-19/imunologia , COVID-19/mortalidade , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Linfócitos B/imunologia , Biomarcadores/sangue , Proteínas Sanguíneas/metabolismo , Estudos de Coortes , Estado Terminal/mortalidade , Feminino , Humanos , Imunofenotipagem , Influenza Humana/imunologia , Lectinas Tipo C/imunologia , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Células T Invariantes Associadas à Mucosa/imunologia , Gravidade do Paciente
6.
Nat Commun ; 12(1): 5061, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404775

RESUMO

The extent to which immune responses to natural infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and immunization with vaccines protect against variants of concern (VOC) is of increasing importance. Accordingly, here we analyse antibodies and T cells of a recently vaccinated, UK cohort, alongside those recovering from natural infection in early 2020. We show that neutralization of the VOC compared to a reference isolate of the original circulating lineage, B, is reduced: more profoundly against B.1.351 than for B.1.1.7, and in responses to infection or a single dose of vaccine than to a second dose of vaccine. Importantly, high magnitude T cell responses are generated after two vaccine doses, with the majority of the T cell response directed against epitopes that are conserved between the prototype isolate B and the VOC. Vaccination is required to generate high potency immune responses to protect against these and other emergent variants.


Assuntos
Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Anticorpos Monoclonais/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Proteínas de Transporte , Epitopos , Humanos , Imunidade , SARS-CoV-2/efeitos dos fármacos , Linfócitos T/imunologia
7.
Brain Behav Immun ; 95: 413-428, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33892139

RESUMO

Double stranded RNA is generated during viral replication. The synthetic analogue poly I:C is frequently used to mimic anti-viral innate immune responses in models of psychiatric and neurodegenerative disorders including schizophrenia, autism, Parkinson's disease and Alzheimer's disease. Many studies perform limited analysis of innate immunity despite these responses potentially differing as a function of dsRNA molecular weight and age. Therefore fundamental questions relevant to impacts of systemic viral infection on brain function and integrity remain. Here, we studied innate immune-inducing properties of poly I:C preparations of different lengths and responses in adult and aged mice. High molecular weight (HMW) poly I:C (1-6 kb, 12 mg/kg) produced more robust sickness behavior and more robust IL-6, IFN-I and TNF-α responses than poly I:C of < 500 bases (low MW) preparations. This was partly overcome with higher doses of LMW (up to 80 mg/kg), but neither circulating IFNß nor brain transcription of Irf7 were significantly induced by LMW poly I:C, despite brain Ifnb transcription, suggesting that brain IFN-dependent gene expression is predominantly triggered by circulating IFNß binding of IFNAR1. In aged animals, poly I:C induced exaggerated IL-6, IL-1ß and IFN-I in the plasma and similar exaggerated brain cytokine responses. This was associated with acute working memory deficits selectively in aged mice. Thus, we demonstrate dsRNA length-, IFNAR1- and age-dependent effects on anti-viral inflammation and cognitive function. The data have implications for CNS symptoms of acute systemic viral infection such as those with SARS-CoV-2 and for models of maternal immune activation.


Assuntos
COVID-19 , Disfunção Cognitiva , Animais , Humanos , Comportamento de Doença , Imunidade Inata , Camundongos , Poli I-C , RNA de Cadeia Dupla , Receptor de Interferon alfa e beta/genética , SARS-CoV-2
8.
Nat Commun ; 12(1): 2055, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824342

RESUMO

Identification of protective T cell responses against SARS-CoV-2 requires distinguishing people infected with SARS-CoV-2 from those with cross-reactive immunity to other coronaviruses. Here we show a range of T cell assays that differentially capture immune function to characterise SARS-CoV-2 responses. Strong ex vivo ELISpot and proliferation responses to multiple antigens (including M, NP and ORF3) are found in 168 PCR-confirmed SARS-CoV-2 infected volunteers, but are rare in 119 uninfected volunteers. Highly exposed seronegative healthcare workers with recent COVID-19-compatible illness show T cell response patterns characteristic of infection. By contrast, >90% of convalescent or unexposed people show proliferation and cellular lactate responses to spike subunits S1/S2, indicating pre-existing cross-reactive T cell populations. The detection of T cell responses to SARS-CoV-2 is therefore critically dependent on assay and antigen selection. Memory responses to specific non-spike proteins provide a method to distinguish recent infection from pre-existing immunity in exposed populations.


Assuntos
Antivirais/farmacologia , COVID-19/imunologia , COVID-19/virologia , Reações Cruzadas/imunologia , Imunoensaio/métodos , SARS-CoV-2/fisiologia , Linfócitos T/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/epidemiologia , Proliferação de Células , Citocinas/metabolismo , Células HEK293 , Pessoal de Saúde , Humanos , Imunoglobulina G/imunologia , Memória Imunológica , Interferon gama/metabolismo , Pandemias , Peptídeos/metabolismo , SARS-CoV-2/efeitos dos fármacos
9.
bioRxiv ; 2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33442686

RESUMO

Double stranded RNA is generated during viral replication. The synthetic analog poly I:C is frequently used to mimic anti-viral innate immune responses in models of psychiatric and neurodegenerative disease including autism, schizophrenia, Parkinsons disease and Alzheimers disease. Many studies perform limited analysis of innate immunity despite these responses potentially differing as a function of dsRNA molecular weight and age. Therefore fundamental questions relevant to impacts of systemic viral infection on brain function and integrity remain. Here, we studied innate immune-inducing properties of poly I:C preparations of different lengths and responses in adult and aged mice. High molecular weight (HMW) poly I:C (1 to 6 kb, 12 mg/kg) produced more robust sickness behavior and more robust IL-6, IFN-I and TNF alpha responses than poly I:C of less than 500 bases (low MW) preparations. This was partly overcome with higher doses of LMW (up to 80 mg/kg), but neither circulating IFN beta nor brain transcription of Irf7 were significantly induced by LMW poly I:C, despite brain Ifnb transcription, suggesting that brain IFN-dependent gene expression is predominantly triggered by circulating IFN beta binding of IFNAR1. In aged animals, poly I:C induced exaggerated IL-6, IL-1beta and IFN-I in the plasma and similar exaggerated brain cytokine responses. This was associated with acute working memory deficits selectively in aged mice. Thus, we demonstrate dsRNA length, IFNAR1 and age-dependent effects on antiviral inflammation and cognitive function. The data have implications for CNS symptoms of acute systemic viral infection such as those with SARS-CoV-2 and for models of maternal immune activation.

10.
Elife ; 92020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32820721

RESUMO

We conducted voluntary Covid-19 testing programmes for symptomatic and asymptomatic staff at a UK teaching hospital using naso-/oro-pharyngeal PCR testing and immunoassays for IgG antibodies. 1128/10,034 (11.2%) staff had evidence of Covid-19 at some time. Using questionnaire data provided on potential risk-factors, staff with a confirmed household contact were at greatest risk (adjusted odds ratio [aOR] 4.82 [95%CI 3.45-6.72]). Higher rates of Covid-19 were seen in staff working in Covid-19-facing areas (22.6% vs. 8.6% elsewhere) (aOR 2.47 [1.99-3.08]). Controlling for Covid-19-facing status, risks were heterogenous across the hospital, with higher rates in acute medicine (1.52 [1.07-2.16]) and sporadic outbreaks in areas with few or no Covid-19 patients. Covid-19 intensive care unit staff were relatively protected (0.44 [0.28-0.69]), likely by a bundle of PPE-related measures. Positive results were more likely in Black (1.66 [1.25-2.21]) and Asian (1.51 [1.28-1.77]) staff, independent of role or working location, and in porters and cleaners (2.06 [1.34-3.15]).


Assuntos
Infecções por Coronavirus/epidemiologia , Pessoal de Saúde/estatística & dados numéricos , Pneumonia Viral/epidemiologia , Adolescente , Adulto , Fatores Etários , Idoso , Infecções Assintomáticas/epidemiologia , Betacoronavirus/isolamento & purificação , COVID-19 , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Feminino , Hospitais de Ensino/estatística & dados numéricos , Humanos , Incidência , Transmissão de Doença Infecciosa do Paciente para o Profissional/estatística & dados numéricos , Unidades de Terapia Intensiva/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Risco , SARS-CoV-2 , Inquéritos e Questionários , Reino Unido/epidemiologia , Adulto Jovem
11.
Mol Psychiatry ; 24(10): 1566, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30890763

RESUMO

Following publication of this article, the authors noticed an error in the abstract, where they incorrectly stated that: "Direct application of IL-1ß to ex vivo hippocampal slices induced non-synaptic depolarisation and irreversible loss of membrane potential in CA1 neurons from diseased animals and systemic LPS increased apoptosis in the degenerating brain, in an IL-1RI-/--dependent fashion". This has now been corrected to: "Direct application of IL-1ß to ex vivo hippocampal slices induced non-synaptic depolarisation and irreversible loss of membrane potential in CA1 neurons from diseased animals and systemic LPS increased apoptosis in the degenerating brain, in an IL-1RI-dependent fashion". The authors would like to apologise for this error. This has been corrected in both the PDF and HTML versions of the article.

12.
Mol Psychiatry ; 24(10): 1533-1548, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-29875474

RESUMO

Systemic inflammation can impair cognition with relevance to dementia, delirium and post-operative cognitive dysfunction. Episodes of delirium also contribute to rates of long-term cognitive decline, implying that these acute events induce injury. Whether systemic inflammation-induced acute dysfunction and acute brain injury occur by overlapping or discrete mechanisms remains unexplored. Here we show that systemic inflammation, induced by bacterial LPS, produces both working-memory deficits and acute brain injury in the degenerating brain and that these occur by dissociable IL-1-dependent processes. In normal C57BL/6 mice, LPS (100 µg/kg) did not affect working memory but impaired long-term memory consolidation. However prior hippocampal synaptic loss left mice selectively vulnerable to LPS-induced working memory deficits. Systemically administered IL-1 receptor antagonist (IL-1RA) was protective against, and systemic IL-1ß replicated, these working memory deficits. Dexamethasone abolished systemic cytokine synthesis and was protective against working memory deficits, without blocking brain IL-1ß synthesis. Direct application of IL-1ß to ex vivo hippocampal slices induced non-synaptic depolarisation and irreversible loss of membrane potential in CA1 neurons from diseased animals and systemic LPS increased apoptosis in the degenerating brain, in an IL-1RI-dependent fashion. The data suggest that LPS induces working memory dysfunction via circulating IL-1ß but direct hippocampal action of IL-1ß causes neuronal dysfunction and may drive neuronal death. The data suggest that acute systemic inflammation produces both reversible cognitive deficits, resembling delirium, and acute brain injury contributing to long-term cognitive impairment but that these events are mechanistically dissociable. These data have significant implications for management of cognitive dysfunction during acute illness.


Assuntos
Lesões Encefálicas/imunologia , Disfunção Cognitiva/imunologia , Interleucina-1/metabolismo , Animais , Encéfalo/metabolismo , Cognição/fisiologia , Transtornos Cognitivos/imunologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Citocinas/metabolismo , Demência/imunologia , Feminino , Hipocampo/metabolismo , Inflamação/complicações , Inflamação/metabolismo , Interleucina-1/imunologia , Lipopolissacarídeos/farmacologia , Transtornos da Memória/imunologia , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo
13.
Am J Geriatr Psychiatry ; 23(4): 403-415, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25239680

RESUMO

BACKGROUND: Delirium is a profound neuropsychiatric disturbance precipitated by acute illness. Although dementia is the major risk factor this has typically been considered a binary quantity (i.e., cognitively impaired versus cognitively normal) with respect to delirium risk. We used humans and mice to address the hypothesis that the severity of underlying neurodegenerative changes and/or cognitive impairment progressively alters delirium risk. METHODS: Humans in a population-based longitudinal study, Vantaa 85+, were followed for incident delirium. Odds for reporting delirium at follow-up (outcome) were modeled using random-effects logistic regression, where prior cognitive impairment measured by Mini-Mental State Exam (MMSE) (exposure) was considered. To address whether underlying neurodegenerative pathology increased susceptibility to acute cognitive change, mice at three stages of neurodegenerative disease progression (ME7 model of neurodegeneration: controls, 12 weeks, and 16 weeks) were assessed for acute cognitive dysfunction upon systemic inflammation induced by bacterial lipopolysaccharide (LPS; 100 µg/kg). Synaptic and axonal correlates of susceptibility to acute dysfunction were assessed using immunohistochemistry. RESULTS: In the Vantaa cohort, 465 persons (88.4 ± 2.8 years) completed MMSE at baseline. For every MMSE point lost, risk of incident delirium increased by 5% (p = 0.02). LPS precipitated severe and fluctuating cognitive deficits in 16-week ME7 mice but lower incidence or no deficits in 12-week ME7 and controls, respectively. This was associated with progressive thalamic synaptic loss and axonal pathology. CONCLUSION: A human population-based cohort with graded severity of existing cognitive impairment and a mouse model with progressing neurodegeneration both indicate that the risk of delirium increases with greater severity of pre-existing cognitive impairment and neuropathology.


Assuntos
Axônios/patologia , Transtornos Cognitivos/patologia , Delírio/epidemiologia , Inflamação/patologia , Sinapses/patologia , Idoso de 80 Anos ou mais , Animais , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/complicações , Transtornos Cognitivos/diagnóstico , Transtornos Cognitivos/psicologia , Delírio/complicações , Delírio/diagnóstico , Modelos Animais de Doenças , Progressão da Doença , Finlândia/epidemiologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Inflamação/induzido quimicamente , Inflamação/psicologia , Lipopolissacarídeos , Estudos Longitudinais , Masculino , Aprendizagem em Labirinto , Camundongos , Escalas de Graduação Psiquiátrica , Tálamo/efeitos dos fármacos , Tálamo/patologia
14.
J Neurosci ; 33(38): 15248-58, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24048854

RESUMO

Systemic inflammatory events often precipitate acute cognitive dysfunction in elderly and demented populations. Delirium is a highly prevalent neuropsychiatric syndrome that is characterized by acute inattention and cognitive dysfunction, for which prior dementia is the major predisposing factor and systemic inflammation is a frequent trigger. Inflammatory mechanisms of delirium remain unclear. We have modeled aspects of delirium during dementia by exploiting progressive neurodegeneration in the ME7 mouse model of prion disease and by superimposing systemic inflammation induced by the bacterial endotoxin lipopolysaccharide (LPS). Here, we have used this model to demonstrate that the progression of underlying disease increases the incidence, severity, and duration of acute cognitive dysfunction. This increasing susceptibility is associated with increased CNS expression of cyclooxygenase (COX)-1 in microglia and perivascular macrophages. The COX-1-specific inhibitor SC-560 provided significant protection against LPS-induced cognitive deficits, and attenuated the disease-induced increase in hippocampal and thalamic prostaglandin E2, while the COX-2-specific inhibitor NS-398 was ineffective. SC-560 treatment did not alter levels of the proinflammatory cytokines interleukin (IL)-1ß, tumor necrosis factor-α, IL-6, or C-X-C chemokine ligand 1 in blood or brain, but systemic IL-1RA blocked LPS-induced cognitive deficits, and systemic IL-1ß was sufficient to induce similar deficits in the absence of LPS. Furthermore, the well tolerated COX inhibitor ibuprofen was protective against IL-1ß-induced deficits. These data demonstrate that progressive microglial COX-1 expression and prostaglandin synthesis can underpin susceptibility to cognitive deficits, which can be triggered by systemic LPS-induced IL-1ß. These data contribute to our understanding of how systemic inflammation and ongoing neurodegeneration interact to induce cognitive dysfunction and episodes of delirium.


Assuntos
Encéfalo/metabolismo , Transtornos Cognitivos , Ciclo-Oxigenase 1/metabolismo , Inflamação/complicações , Prostaglandinas/metabolismo , Análise de Variância , Animais , Encéfalo/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/metabolismo , Transtornos Cognitivos/sangue , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/sangue , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/sangue , Inflamação/induzido quimicamente , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Lipopolissacarídeos/toxicidade , Aprendizagem em Labirinto/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Prostaglandina-E Sintases , Prostaglandinas/genética , Pirazóis/farmacologia , RNA Mensageiro
15.
PLoS One ; 8(7): e69123, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840908

RESUMO

It is increasingly clear that systemic inflammation has both adaptive and deleterious effects on the brain. However, detailed comparisons of brain effects of systemic challenges with different pro-inflammatory cytokines are lacking. In the present study, we challenged female C57BL/6 mice intraperitoneally with LPS (100 µg/kg), IL-1ß (15 or 50 µg/kg), TNF-α (50 or 250 µg/kg) or IL-6 (50 or 125 µg/kg). We investigated effects on core body temperature, open field activity and plasma levels of inflammatory markers at 2 hours post injection. We also examined levels of hepatic, hypothalamic and hippocampal inflammatory cytokine transcripts. Hypothermia and locomotor hypoactivity were induced by LPS>IL-1ß>TNF-α>>IL-6. Systemic LPS, IL-1ß and TNF-α challenges induced robust and broadly similar systemic and central inflammation compared to IL-6, which showed limited effects, but did induce a hepatic acute phase response. Important exceptions included IFNß, which could only be induced by LPS. Systemic IL-1ß could not induce significant blood TNF-α, but induced CNS TNF-α mRNA, while systemic TNF-α could induce IL-1ß in blood and brain. Differences between IL-1ß and TNF-α-induced hippocampal profiles, specifically for IL-6 and CXCL1 prompted a temporal analysis of systemic and central responses at 1, 2, 4, 8 and 24 hours, which revealed that IL-1ß and TNF-α both induced the chemokines CXCL1 and CCL2 but only IL-1ß induced the pentraxin PTX3. Expression of COX-2, CXCL1 and CCL2, with nuclear localisation of the p65 subunit of NFκB, in the cerebrovasculature was demonstrated by immunohistochemistry. Furthermore, we used cFOS immunohistochemistry to show that LPS, IL-1ß and to a lesser degree, TNF-α activated the central nucleus of the amygdala. Given the increasing attention in the clinical literautre on correlating specific systemic inflammatory mediators with neurological or neuropsychiatric conditions and complications, these data will provide a useful resource on the likely CNS inflammatory profiles resulting from systemic elevation of particular cytokines.


Assuntos
Encéfalo/imunologia , Interleucina-1beta/imunologia , Interleucina-6/imunologia , Lipopolissacarídeos/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Temperatura Corporal , Encéfalo/metabolismo , Citocinas/sangue , Citocinas/imunologia , Feminino , Regulação da Expressão Gênica , Inflamação/genética , Inflamação/imunologia , Interleucina-1beta/administração & dosagem , Interleucina-6/administração & dosagem , Lipopolissacarídeos/administração & dosagem , Fígado/imunologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Ativação Transcricional , Fator de Necrose Tumoral alfa/administração & dosagem
16.
J Neuroinflammation ; 8: 50, 2011 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21586125

RESUMO

BACKGROUND: Chronic neurodegeneration comprises an inflammatory response but its contribution to the progression of disease remains unclear. We have previously shown that microglial cells are primed by chronic neurodegeneration, induced by the ME7 strain of prion disease, to synthesize limited pro-inflammatory cytokines but to produce exaggerated responses to subsequent systemic inflammatory insults. The consequences of this primed response include exaggerated hypothermic and sickness behavioural responses, acute neuronal death and accelerated progression of disease. Here we investigated whether inhibition of systemic cytokine synthesis using the anti-inflammatory steroid dexamethasone-21-phosphate was sufficient to block any or all of these responses. METHODS: ME7 animals, at 18-19 weeks post-inoculation, were challenged with LPS (500 µg/kg) in the presence or absence of dexamethasone-21-phosphate (2 mg/kg) and effects on core-body temperature and systemic and CNS cytokine production and apoptosis were examined. RESULTS: LPS induced hypothermia and decreased exploratory activity. Dexamethasone-21-phosphate prevented this hypothermia, markedly suppressed systemic IL-1ß and IL-6 secretion but did not prevent decreased exploration. Furthermore, robust transcription of cytokine mRNA occurred in the hippocampus of both ME7 and NBH (normal brain homogenate) control animals despite the effective blocking of systemic cytokine synthesis. Microglia primed by neurodegeneration were not blocked from the robust synthesis of IL-1ß protein and endothelial COX-2 was also robustly synthesized. We injected biotinylated LPS at 100 µg/kg and even at this lower dose this could be detected in blood plasma. Apoptosis was acutely induced by LPS, despite the inhibition of the systemic cytokine response. CONCLUSIONS: These data suggest that LPS can directly activate the brain endothelium even at relatively low doses, obviating the need for systemic cytokine stimulation to transduce systemic inflammatory signals into the brain or to exacerbate existing pathology.


Assuntos
Sistema Nervoso Central , Interleucina-1beta/sangue , Interleucina-6/sangue , Lipopolissacarídeos/farmacologia , Degeneração Neural/imunologia , Degeneração Neural/patologia , Animais , Comportamento Animal/efeitos dos fármacos , Temperatura Corporal/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dexametasona/análogos & derivados , Dexametasona/farmacologia , Feminino , Glucocorticoides/farmacologia , Hipotermia/induzido quimicamente , Interleucina-1beta/imunologia , Interleucina-6/imunologia , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...