Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Viruses ; 16(4)2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675993

RESUMO

Bellinger River virus (BRV) is a serpentovirus (nidovirus) that was likely responsible for the catastrophic mortality of the Australian freshwater turtle Myuchelys georgesi in February 2015. From November 2015 to November 2020, swabs were collected from turtles during repeated river surveys to estimate the prevalence of BRV RNA, identify risk factors associated with BRV infection, and refine sample collection. BRV RNA prevalence at first capture was significantly higher in M. georgesi (10.8%) than in a coexisting turtle, Emydura macquarii (1.0%). For M. georgesi, various risk factors were identified depending on the analysis method, but a positive BRV result was consistently associated with a larger body size. All turtles were asymptomatic when sampled and conjunctival swabs were inferred to be optimal for ongoing monitoring. Although the absence of disease and recent BRV detections suggests a reduced ongoing threat, the potential for the virus to persist in an endemic focus or resurge in cyclical epidemics cannot be excluded. Therefore, BRV is an ongoing potential threat to the conservation of M. georgesi, and strict adherence to biosecurity principles is essential to minimise the risk of reintroduction or spread of BRV or other pathogens.


Assuntos
Espécies em Perigo de Extinção , Tartarugas , Animais , Tartarugas/virologia , Austrália/epidemiologia , Nidovirales/genética , Nidovirales/isolamento & purificação , Infecções por Nidovirales/epidemiologia , Infecções por Nidovirales/veterinária , Infecções por Nidovirales/virologia , Prevalência , Filogenia , Rios/virologia , RNA Viral/genética , Fatores de Risco
2.
Annu Rev Anim Biosci ; 12: 113-133, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358840

RESUMO

Extensive knowledge gains from research worldwide over the 25 years since the discovery of chytridiomycosis can be used for improved management. Strategies that have saved populations in the short term and/or enabled recovery include captive breeding, translocation into disease refugia, translocation from resistant populations, disease-free exclosures, and preservation of disease refuges with connectivity to previous habitat, while antifungal treatments have reduced mortality rates in the wild. Increasing host resistance is the goal of many strategies under development, including vaccination and targeted genetic interventions. Pathogen-directed strategies may be more challenging but would have broad applicability. While the search for the silver bullet solution continues, we should value targeted local interventions that stop extinction and buy time for evolution of resistance or development of novel solutions. As for most invasive species and infectious diseases, we need to accept that ongoing management is necessary. For species continuing to decline, proactive deployment and assessment of promising interventions are more valid than a hands-off, do-no-harm approach that will likely allow further extinctions.


Assuntos
Quitridiomicetos , Micoses , Animais , Austrália , Melhoramento Vegetal , Micoses/tratamento farmacológico , Micoses/veterinária , Micoses/microbiologia , Anfíbios
3.
Int J Parasitol Parasites Wildl ; 23: 100899, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38274349

RESUMO

Moxidectin (MOX) is a macrocyclic lactone used to eliminate endo and ectoparasites in many mammalian species. It is notably the active ingredient of the anti-parasitic drug Cydectin®, manufactured by Virbac, and is frequently used to treat sarcoptic mange in Australian wildlife. Protein binding plays a significant role in the efficacy of a drug, as the unbound/free drug in plasma ultimately reflects the pharmacologically relevant concentration. This study aimed to investigate the free drug percentage of Moxidectin after in vitro spiking into the sera of four sarcoptic mange-susceptible Australian wildlife species; the koala (Phascolarctos cinereus), the bare-nosed wombat (Vombatus ursinus), the eastern grey kangaroo (Macropus giganteus), and the mountain brushtail possum (Trichosurus cunninghami). Three concentration points of MOX were tested for each individual: 20 pg/µL, 100 pg/µL and 500 pg/µL. Serum from five individuals of each species underwent an equilibrium dialysis followed by liquid chromatography tandem mass spectrometry (LC-MS/MS). The results showed an atypical concentration dependent binding across all species, where free drug percentage decreased as MOX concentration increased. In addition, wombats showed significantly lower free drug levels. These findings call for further research into the mechanisms of moxidectin protein binding to help understand MOX pharmacokinetics in marsupials.

4.
Biochimie ; 220: 22-30, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38104714

RESUMO

Batrachochytrium dendrobatidis (Bd) is a lethal amphibian pathogen, partly due to its ability to evade the immune system of susceptible frog species. In many pathogenic fungi, the antioxidant glutathione is a virulence factor that helps neutralise oxidative stressors generated from host immune cells, as well as other environmental stressors such as heavy metals. The role of glutathione in stress tolerance in Bd has not been investigated. Here, we examine the changes in the glutathione pool after stress exposure and quantify the effect of glutathione depletion on cell growth and stress tolerance. Depletion of glutathione repressed growth and release of zoospores, suggesting that glutathione is essential for life cycle completion in Bd. Supplementation with <2 mM exogenous glutathione accelerated zoospore development, but concentrations >2 mM were strongly inhibitory to Bd cells. While hydrogen peroxide exposure lowered the total cellular glutathione levels by 42 %, glutathione depletion did not increase the sensitivity to hydrogen peroxide. Exposure to cadmium increased total cellular glutathione levels by 93 %. Glutathione-depleted cells were more sensitive to cadmium, and this effect was attenuated by glutathione supplementation, suggesting that glutathione plays an important role in cadmium tolerance. The effects of heat and salt were exacerbated by the addition of exogenous glutathione. The impact of glutathione levels on Bd stress sensitivity may help explain differences in host susceptibility to chytridiomycosis and may provide opportunities for synergistic therapeutics.


Assuntos
Batrachochytrium , Cádmio , Glutationa , Peróxido de Hidrogênio , Glutationa/metabolismo , Cádmio/toxicidade , Animais , Batrachochytrium/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Micoses/microbiologia , Micoses/veterinária , Micoses/metabolismo , Anfíbios/microbiologia
5.
Infect Ecol Epidemiol ; 13(1): 2270258, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37867606

RESUMO

The alpine ecosystems and communities of central Asia are currently undergoing large-scale ecological and socio-ecological changes likely to affect wildlife-livestock-human disease interactions and zoonosis transmission risk. However, relatively little is known about the prevalence of pathogens in this region. Between 2012 and 2015 we screened 142 rodents in Mongolia's Gobi desert for exposure to important zoonotic and livestock pathogens. Rodent seroprevalence to Leptospira spp. was >1/3 of tested animals, Toxoplasma gondii and Coxiella burnetii approximately 1/8 animals, and the hantaviruses being between 1/20 (Puumala-like hantavirus) and <1/100 (Seoul-like hantavirus). Gerbils trapped inside local dwellings were one of the species seropositive to Puumala-like hantavirus, suggesting a potential zoonotic transmission pathway. Seventeen genera of zoonotic bacteria were also detected in the faeces and ticks collected from these rodents, with one tick testing positive to Yersinia. Our study helps provide baseline patterns of disease prevalence needed to infer potential transmission between source and target populations in this region, and to help shift the focus of epidemiological research towards understanding disease transmission among species and proactive disease mitigation strategies within a broader One Health framework.

6.
Heliyon ; 9(10): e20544, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37867892

RESUMO

Humanity is now facing what may be the biggest challenge to its existence: irreversible climate change brought about by human activity. Our planet is in a state of emergency, and we only have a short window of time (7-8 years) to enact meaningful change. The goal of this systematic literature review is to summarize the peer-reviewed literature on proposed solutions to climate change in the last 20 years (2002-2022), and to propose a framework for a unified approach to solving this climate change crisis. Solutions reviewed include a transition toward use of renewable energy resources, reduced energy consumption, rethinking the global transport sector, and nature-based solutions. This review highlights one of the most important but overlooked pieces in the puzzle of solving the climate change problem - the gradual shift to a plant-based diet and global phaseout of factory (industrialized animal) farming, the most damaging and prolific form of animal agriculture. The gradual global phaseout of industrialized animal farming can be achieved by increasingly replacing animal meat and other animal products with plant-based products, ending government subsidies for animal-based meat, dairy, and eggs, and initiating taxes on such products. Failure to act will ultimately result in a scenario of irreversible climate change with widespread famine and disease, global devastation, climate refugees, and warfare. We therefore suggest an "All Life" approach, invoking the interconnectedness of all life forms on our planet. The logistics for achieving this include a global standardization of Environmental, Social, and Governance (ESG) or similar measures and the introduction of a regulatory body for verification of such measures. These approaches will help deliver environmental and sustainability benefits for our planet far beyond an immediate reduction in global warming.

7.
Emerg Infect Dis ; 29(10): 1-7, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37735750

RESUMO

The world's reptiles and amphibians are experiencing dramatic and ongoing losses in biodiversity, changes that can have substantial effects on ecosystems and human health. In 2022, the first Global Amphibian and Reptile Disease Conference was held, using One Health as a guiding principle. The conference showcased knowledge on numerous reptile and amphibian pathogens from several standpoints, including epidemiology, host immune defenses, wild population effects, and mitigation. The conference also provided field experts the opportunity to discuss and identify the most urgent herpetofaunal disease research directions necessary to address current and future threats to reptile and amphibian biodiversity.


Assuntos
Ecossistema , Saúde Única , Humanos , Animais , Anfíbios , Répteis , Biodiversidade
8.
Animals (Basel) ; 13(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37443920

RESUMO

The chytrid fungus Batrachochytrium dendrobatidis (Bd) is a major threat to amphibians, yet there are no reports of major disease impacts in East Asian frogs. Genetic variation of the major histocompatibility complex (MHC) has been associated with resistance to Bd in frogs from East Asia and worldwide. Using transcriptomic data collated from 11 Japanese frog species (one individual per species), we isolated MHC class I and IIb sequences and validated using molecular cloning. We then compared MHC from Japanese frogs and other species worldwide, with varying Bd susceptibility. Supertyping analysis, which groups MHC alleles based on physicochemical properties of peptide binding sites, identified that all examined East Asian frogs contained at least one MHC-IIb allele belonging to supertype ST-1. This indicates that, despite the large divergence times between some Japanese frogs (up to 145 million years), particular functional properties in the peptide binding sites of MHC-II are conserved among East Asian frogs. Furthermore, preliminary analysis using NetMHCIIpan-4.0, which predicts potential Bd-peptide binding ability, suggests that MHC-IIb ST-1 and ST-2 have higher overall peptide binding ability than other supertypes, irrespective of whether the peptides are derived from Bd, other fungi, or bacteria. Our findings suggest that MHC-IIb among East Asian frogs may have co-evolved under the same selective pressure. Given that Bd originated in this region, it may be a major driver of MHC evolution in East Asian frogs.

9.
Trends Ecol Evol ; 37(4): 332-345, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35027225

RESUMO

The global rate of wildlife extinctions is accelerating, and the persistence of many species requires conservation breeding programs. A central paradigm of these programs is to preserve the genetic diversity of the founder populations. However, this may preserve original characteristics that make them vulnerable to extinction. We introduce targeted genetic intervention (TGI) as an alternative approach that promotes traits that enable species to persist in the face of threats by changing the incidence of alleles that impact on fitness. The TGI toolkit includes methods with established efficacy in model organisms and agriculture but are largely untried for conservation, such as synthetic biology and artificial selection. We explore TGI approaches as a species-restoration tool for intractable threats including infectious disease and climate change.


Assuntos
Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Alelos , Animais , Animais Selvagens , Mudança Climática
10.
Conserv Biol ; 36(1): e13724, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33634525

RESUMO

Wildlife health assessments help identify populations at risk of starvation, disease, and decline from anthropogenic impacts on natural habitats. We conducted an overview of available health assessment studies in noncaptive vertebrates and devised a framework to strategically integrate health assessments in population monitoring. Using a systematic approach, we performed a thorough assessment of studies examining multiple health parameters of noncaptive vertebrate species from 1982 to 2020 (n = 261 studies). We quantified trends in study design and diagnostic methods across taxa with generalized linear models, bibliometric analyses, and visual representations of study location versus biodiversity hotspots. Only 35% of studies involved international or cross-border collaboration. Countries with both high and threatened biodiversity were greatly underrepresented. Species that were not listed as threatened on the International Union for Conservation of Nature Red List represented 49% of assessed species, a trend likely associated with the regional focus of most studies. We strongly suggest following wildlife health assessment protocols when planning a study and using statistically adequate sample sizes for studies establishing reference ranges. Across all taxa blood analysis (89%), body composition assessments (81%), physical examination (72%), and fecal analyses (24% of studies) were the most common methods. A conceptual framework to improve design and standardize wildlife health assessments includes guidelines on the experimental design, data acquisition and analysis, and species conservation planning and management implications. Integrating a physiological and ecological understanding of species resilience toward threatening processes will enable informed decision making regarding the conservation of threatened species.


Importancia de los exámenes diagnósticos para la conservación de fauna silvestre Resumen Los exámenes diagnósticos de fauna silvestre ayudan a identificar poblaciones en riesgo por desnutrición, enfermedades infecciosas y disminución poblacional, causadas por impactos antropogénicos. Revisamos los estudios disponibles que llevaron a cabo exámenes diagnósticos en fauna silvestre y diseñamos un marco de trabajo para integrar dichos exámenes en monitoreos poblacionales. Empleando un enfoque sistemático, evaluamos aquellos estudios que examinaban múltiples indicadores de salud en vertebrados no cautivos entre 1982 y 2020 (n = 261 estudios). Cuantificamos las tendencias estadísticas, clasificadas por taxones, del diseño del estudio y de los métodos diagnósticos usando modelos lineales generalizados, análisis bibliométricos y representaciones visuales del lugar de estudio versus los hotspots (puntos calientes) de biodiversidad. Sólo el 35% de los estudios incluían colaboraciones internacionales o transfronterizas, y los países ricos en biodiversidad y especies amenazadas estaban gravemente subrepresentados. Las especies no clasificadas como amenazadas en la Lista Roja de la Unión Internacional para la Conservación de la Naturaleza representaban el 49% de las especies examinadas; una tendencia posiblemente asociada al enfoque regional de la mayoría de los estudios. Recomendamos encarecidamente seguir protocolos diagnósticos y manuales de técnicas del estudio de la fauna silvestre, además de usar tamaños muestrales estadísticamente adecuados al establecer rangos de referencia. Los métodos diagnósticos más comunes para todos los taxones fueronanálisis sanguíneos (89%), evaluaciones de composición corporal (81%), exámenes físicos (72%) y análisis fecales (24% de los estudios). Presentamos un marco conceptual para mejorar y estandarizar los exámenes diagnósticos en estudios de fauna silvestre; dicho marco incluye guías para el diseño experimental, para la obtención y el análisis de datos, y para elaborar planes de acción para especies amenazadas. La combinación de conocimientos fisiológicos y ecológicos, relacionados con la resiliencia biológica de especies amenazadas, facilitará una toma de decisiones eficiente para el manejo y para la conservación de la biodiversidad.


Assuntos
Animais Selvagens , Conservação dos Recursos Naturais , Animais , Biodiversidade , Ecossistema , Espécies em Perigo de Extinção
11.
Fungal Biol ; 126(1): 75-81, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34930560

RESUMO

Mycoviruses may influence the pathogenicity of disease-causing fungi. Although mycoviruses have been found in some chytrid fungi, limited testing has not detected them in Batrachochytrium dendrobatidis (Bd), the cause of the devastating amphibian disease, chytridiomycosis. Here we conducted a survey for mycovirus presence in 38 Bd isolates from Australia (n = 31), Brazil (n = 5) and South Korea (n = 2) with a combination of modern high-throughput sequencing and conventional dsRNA cellulose chromatography. Mycoviruses were not detected in any isolates. This result was unexpected, given the long evolutionary history of Bd, as well as the high prevalence of mycoviruses in related fungal species. Given our widespread sampling in Australia and the limited number of Bd introductions, we suggest that mycoviruses are uncommon or absent from Australian Bd. Testing more isolates from regions where Bd originated, as well as regions with high diversity or low fungal virulence may identify mycoviruses that could aid in disease control.


Assuntos
Quitridiomicetos , Micovírus , Anfíbios , Animais , Austrália , Batrachochytrium , Micovírus/genética
12.
Front Vet Sci ; 8: 733404, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621811

RESUMO

Since their discovery in 2014, reptile nidoviruses (also known as serpentoviruses) have emerged as significant pathogens worldwide. They are known for causing severe and often fatal respiratory disease in various captive snake species, especially pythons. Related viruses have been detected in other reptiles with and without respiratory disease, including captive and wild populations of lizards, and wild populations of freshwater turtles. There are many opportunities to better understand the viral diversity, species susceptibility, and clinical presentation in different species in this relatively new field of research. In captive snake collections, reptile nidoviruses can spread quickly and be associated with high morbidity and mortality, yet the potential disease risk to wild reptile populations remains largely unknown, despite reptile species declining on a global scale. Experimental studies or investigations of disease outbreaks in wild reptile populations are scarce, leaving the available literature limited mostly to exploring findings of naturally infected animals in captivity. Further studies into the pathogenesis of different reptile nidoviruses in a variety of reptile species is required to explore the complexity of disease and routes of transmission. This review focuses on the biology of these viruses, hosts and geographic distribution, clinical signs and pathology, laboratory diagnosis and management of reptile nidovirus infections to better understand nidovirus infections in reptiles.

13.
Evolution ; 75(10): 2555-2567, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34383313

RESUMO

The devastating infectious disease chytridiomycosis has caused declines of amphibians across the globe, yet some populations are persisting and even recovering. One understudied effect of wildlife disease is changes in reproductive effort. Here, we aimed to understand if the disease has plastic effects on reproduction and if reproductive effort could evolve with disease endemism. We compared the effects of experimental pathogen exposure (trait plasticity) and population-level disease history (evolution in trait baseline) on reproductive effort using gametogenesis as a proxy in the declining and endangered frog Litoria verreauxii alpina. We found that unexposed males from disease-endemic populations had higher reproductive effort, which is consistent with an evolutionary response to chytridiomycosis. We also found evidence of trait plasticity, where males and females were affected differently by infection: pathogen exposed males had higher reproductive effort (larger testes), whereas females had reduced reproductive effort (smaller and fewer developed eggs) regardless of the population of origin. Infectious diseases can cause plastic changes in the reproductive effort at an individual level, and population-level disease exposure can result in changes to baseline reproductive effort; therefore, individual- and population-level effects of disease should be considered when designing management and conservation programs for threatened and declining species.


Assuntos
Quitridiomicetos , Micoses , Animais , Anuros , Feminino , Masculino , Reprodução
14.
Viruses ; 13(2)2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513882

RESUMO

Australian bat lyssavirus (ABLV) was first described in 1996 and has been regularly detected in Australian bats since that time. While the virus does not cause population level impacts in bats and has minimal impacts on domestic animals, it does pose a public health risk. For this reason, bats are monitored for ABLV and a national dataset is collated and maintained by Wildlife Health Australia. The 2010-2016 dataset was analysed using logistic regression and time-series analysis to identify predictors of infection status in bats and the factors associated with human exposure to bats. In common with previous passive surveillance studies, we found that little red flying-foxes (Pteropus scapulatus) are more likely than other species to be infected with ABLV. In the four Australian mainland species of flying-fox, there are seasonal differences in infection risk that may be associated with reproductive cycles, with summer and autumn the seasons of greatest risk. The risk of human contact was also seasonal, with lower risk in winter. In line with other studies, we found that the circumstances in which the bat is encountered, such as exhibiting abnormal behaviour or being grounded, are risk factors for ABLV infection and human contact and should continue be key components of public health messaging. We also found evidence of biased recording of some types of information, which made interpretation of some findings more challenging. Strengthening of "One Health" linkages between public health and animal health services at the operational level could help overcome these biases in future, and greater harmonisation nationally would increase the value of the dataset.


Assuntos
Quirópteros/virologia , Monitoramento Epidemiológico/veterinária , Lyssavirus , Infecções por Rhabdoviridae/veterinária , Animais , Austrália/epidemiologia , Quirópteros/classificação , Feminino , Humanos , Masculino , Saúde Única , Infecções por Rhabdoviridae/epidemiologia , Infecções por Rhabdoviridae/transmissão , Infecções por Rhabdoviridae/virologia , Fatores de Risco , Estações do Ano , Especificidade da Espécie , Zoonoses Virais
15.
J Zoo Wildl Med ; 51(4): 868-878, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33480567

RESUMO

Lumholtz's tree-kangaroo (Dendrolagus lumholtzi) is one of two species of tree-kangaroos found in Queensland, Australia. There is little information about ocular anatomy and pathology in any species of tree-kangaroo, and there are claims of blindness from unknown causes in free-ranging Lumholtz's tree-kangaroos. This study investigated ocular anatomy and pathology in 80 individuals, using examination of 31 live animals and histopathologic examination of eyes from 49 carcasses. Tree-kangaroos were found to have a typical vertebrate eye with immuno-histochemical evidence for dichromatic color vision. Only 5.4% of animals had evidence of pathology from traumatic injury, infection, or a variety of nonspecific lesions. Toxoplasmosis was implicated in ocular lesions in three animals. This study did not find evidence of widespread blindness in free-ranging animals nor evidence of toxic optic neuropathy. Examinations of live animals highlighted the need to establish normal ocular examination parameters and vision testing protocols suitable for use in tree-kangaroos and the need for more comprehensive examination and testing of animals thought to have vision loss of unknown origin.


Assuntos
Oftalmopatias/veterinária , Olho/anatomia & histologia , Macropodidae , Animais , Animais Selvagens , Oftalmopatias/patologia , Feminino , Masculino , Queensland
18.
J Wildl Dis ; 56(4): 912-917, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32320340

RESUMO

Herpesvirus infections associated with a range of clinical findings are widespread in free-ranging and captive Australian marsupials. We report on herpesviruses identified by virus neutralization and PCR in free-ranging and captive Lumholtz's tree-kangaroos (Dendrolagus lumholtzi). Herpesvirus has not been confirmed previously by DNA testing in tree kangaroos. Virus neutralization testing for alphaherpesviruses MaHV1 and MaHV2 was positive on 4/10 captive and 0/35 free-ranging tree-kangaroo samples tested. A novel gammaherpesvirus was found on PCR in 17/20 apparently healthy individuals (11/12 free-ranging, 5/6 wild-caught, captive, and 1/2 captive-bred). One captive-bred animal that died following an acute illness was positive on PCR only for MaHV4, an alphaherpesvirus previously identified from an eastern grey kangaroo (Macropus giganteus). The detection of MaHV4, associated with morbidity and mortality in captive tree-kangaroos, raises biosecurity concerns about introducing a non-endemic alphaherpesvirus into naive wild populations through release of captive animals. We propose that: 1) further work on herpesviruses in marsupials be carried out to determine whether herpesviruses from captive individuals represent a potential threat to wild populations, particularly for endangered species in which there are captive breeding and cross-fostering programs; and 2) that captive tree kangaroos be kept in such a way that prevents cross-species transmission of herpesviruses, in particular eliminating close direct or indirect contact with other species of macropods.


Assuntos
Infecções por Herpesviridae/veterinária , Herpesviridae/isolamento & purificação , Marsupiais/virologia , Animais , Animais Selvagens , Animais de Zoológico , Feminino , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/virologia , Masculino , Filogenia
19.
Zoonoses Public Health ; 67(4): 435-442, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32311218

RESUMO

In November 2017, two groups of P. conspicillatus pups from separate locations in Far North Queensland presented with neurological signs consistent with Australian bat lyssavirus (ABLV) infection. These pups (n = 11) died over an 11-day period and were submitted to a government laboratory for testing where ABLV infection was confirmed. Over the next several weeks, additional ABLV cases in flying foxes in Queensland were also detected. Brain tissue from ABLV-infected flying foxes during this period, as well as archived brain tissue, was selected for next-generation sequencing. Phylogenetic analysis suggests that the two groups of pups were each infected from single sources. They were likely exposed while in crèche at night as their dams foraged. This study identifies crèche-age pups at a potentially heightened risk for mass ABLV infection.


Assuntos
Quirópteros/virologia , Surtos de Doenças/veterinária , Lyssavirus/isolamento & purificação , Infecções por Rhabdoviridae/veterinária , Animais , Genoma Viral , Lyssavirus/genética , Queensland/epidemiologia , Infecções por Rhabdoviridae/epidemiologia , Infecções por Rhabdoviridae/virologia
20.
Ecol Appl ; 30(7): e02152, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32343856

RESUMO

Chytridiomycosis has been a key driver of global frog declines and extinctions, particularly for high-altitude populations across Australia and the Americas. While recent evidence shows some species are recovering, the extent of such recoveries and the mechanisms underpinning them remain poorly resolved. We surveyed the historical latitudinal and elevational range of four Australian rainforest frogs that disappeared from upland sites between 1989 and 1994 to establish their contemporary distribution and elevational limits, and investigate factors affecting population recovery. Five rainforest streams were surveyed from mountain-base to summit (30 sites in total), with swabs collected from the target species (Litoria dayi, L. nannotis, L. rheocola, and L. serrata) to determine their infection status, and data loggers deployed to measure microclimatic variation across the elevational gradient. Infection probability increased with elevation and canopy cover as it was tightly and inversely correlated with stream-side air temperature. Occupancy patterns suggest varying responses to this disease threat gradient. Two species, L. rheocola and L. serrata, were found over their full historical elevational range (≥1,000 m above sea level [asl]), while L. dayi was not detected above 400 m (formerly known up to 900 m asl) and L. nannotis was not detected above 800 m (formerly known up to 1,200 m asl). Site occupancy probability was negatively related to predicted infection prevalence for L. dayi, L. nannotis, and L. rheocola, but not L. serrata, which appears to now tolerate high fungal burdens. This study highlights the importance of environmental refuges and connectivity across disease risk gradients for the persistence and natural recovery of frogs susceptible to chytridiomycosis. Likewise, in documenting both interspecific variation in recovery rates and intraspecific differences between sites, this study suggests interactions between disease threats and host selection exist that could be manipulated. For example, translocations may be warranted where connectivity is poor or the increase in disease risk is too steep to allow recolonization, combined with assisted selection or use of founders from populations that have already undergone natural selection.


Assuntos
Quitridiomicetos , Micoses , Altitude , Animais , Anuros , Austrália , Floresta Úmida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...