Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38766051

RESUMO

Among neurons, retinal ganglion cells (RGCs) are uniquely sensitive to mitochondrial dysfunction. The RGC is highly polarized, with a somatodendritic compartment in the inner retina and an axonal compartment projecting to targets in the brain. The drastically dissimilar functions of these compartments implies that mitochondria face different bioenergetic and other physiological demands. We hypothesized that compartmental differences in mitochondrial biology would be reflected by disparities in mitochondrial protein composition. Here, we describe a protocol to isolate intact mitochondria separately from mouse RGC somatodendritic and axonal compartments by immunoprecipitating labeled mitochondria from RGC MitoTag mice. Using mass spectrometry, 471 and 357 proteins were identified in RGC somatodendritic and axonal mitochondrial immunoprecipitates, respectively. We identified 10 mitochondrial proteins exclusively in the somatodendritic compartment and 19 enriched ≥2-fold there, while 3 proteins were exclusively identified and 18 enriched in the axonal compartment. Our observation of compartment-specific enrichment of mitochondrial proteins was validated through immunofluorescence analysis of the localization and relative abundance of superoxide dismutase ( SOD2 ), sideroflexin-3 ( SFXN3 ) and trifunctional enzyme subunit alpha ( HADHA ) in retina and optic nerve specimens. The identified compartmental differences in RGC mitochondrial composition may provide promising leads for uncovering physiologically relevant pathways amenable to therapeutic intervention for optic neuropathies.

2.
J Extracell Biol ; 2(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38108061

RESUMO

The retinal pigmented epithelium (RPE) constitutes the outer blood-retinal barrier, enables photoreceptor function of the eye, and is constantly exposed to oxidative stress. As such, dysfunction of the RPE underlies pathology leading to development of age-related macular degeneration (AMD), the leading cause of vision loss among the elderly in industrialized nations. A major responsibility of the RPE is to process photoreceptor outer segments, which relies on the proper functioning of its endocytic pathways and endosomal trafficking. Exosomes and other extracellular vesicles (EVs) from RPE are an essential part of these pathways and may be early indicators of cellular stress. To test the role of small EVs (sEVs) including exosomes, that may underlie the early stages of AMD, we used a polarized primary RPE cell culture model under chronic subtoxic oxidative stress. Unbiased proteomic analyses of highly purified basolateral sEVs from oxidatively stressed RPE cultures revealed changes in proteins involved in epithelial barrier integrity. There were also significant changes in proteins accumulating in the basal-side sub-RPE extracellular matrix during oxidative stress, that could be prevented with an inhibitor of sEV release. Thus, chronic subtoxic oxidative stress in primary RPE cultures induces changes in sEV content, including basal-side specific desmosome and hemidesmosome shedding via sEVs. These findings provide novel biomarkers of early cellular dysfunction and opportunity for therapeutic intervention in age-related retinal diseases (e.g., AMD).

3.
Elife ; 122023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37991486

RESUMO

Visual signal transduction takes place within a stack of flattened membranous 'discs' enclosed within the light-sensitive photoreceptor outer segment. The highly curved rims of these discs, formed in the process of disc enclosure, are fortified by large hetero-oligomeric complexes of two homologous tetraspanin proteins, PRPH2 (a.k.a. peripherin-2 or rds) and ROM1. While mutations in PRPH2 affect the formation of disc rims, the role of ROM1 remains poorly understood. In this study, we found that the knockout of ROM1 causes a compensatory increase in the disc content of PRPH2. Despite this increase, discs of ROM1 knockout mice displayed a delay in disc enclosure associated with a large diameter and lack of incisures in mature discs. Strikingly, further increasing the level of PRPH2 rescued these morphological defects. We next showed that disc rims are still formed in a knockin mouse in which the tetraspanin body of PRPH2 was replaced with that of ROM1. Together, these results demonstrate that, despite its contribution to the formation of disc rims, ROM1 can be replaced by an excess of PRPH2 for timely enclosure of newly forming discs and establishing normal outer segment structure.


Assuntos
Proteínas do Olho , Células Fotorreceptoras , Camundongos , Animais , Periferinas/genética , Periferinas/metabolismo , Proteínas do Olho/metabolismo , Células Fotorreceptoras/metabolismo , Tetraspaninas/genética , Mutação , Camundongos Knockout
4.
bioRxiv ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37693615

RESUMO

Visual signal transduction takes place within a stack of flattened membranous "discs" enclosed within the light-sensitive photoreceptor outer segment. The highly curved rims of these discs, formed in the process of disc enclosure, are fortified by large hetero-oligomeric complexes of two homologous tetraspanin proteins, PRPH2 (a.k.a. peripherin-2 or rds) and ROM1. While mutations in PRPH2 affect the formation of disc rims, the role of ROM1 remains poorly understood. In this study, we found that the knockout of ROM1 causes a compensatory increase in the disc content of PRPH2. Despite this increase, discs of ROM1 knockout mice displayed a delay in disc enclosure associated with a large diameter and lack of incisures in mature discs. Strikingly, further increasing the level of PRPH2 rescued these morphological defects. We next showed that disc rims are still formed in a knockin mouse in which the tetraspanin body of PRPH2 was replaced with that of ROM1. Together, these results demonstrate that, despite its contribution to the formation of disc rims, ROM1 can be replaced by an excess of PRPH2 for timely enclosure of newly forming discs and establishing normal outer segment structure.

5.
bioRxiv ; 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37398366

RESUMO

The retinal pigmented epithelium (RPE) constitutes the outer blood-retinal barrier, enables photoreceptor function of the eye, and is constantly exposed to oxidative stress. As such, dysfunction of the RPE underlies pathology leading to development of age-related macular degeneration (AMD), the leading cause of vision loss among the elderly in industrialized nations. A major responsibility of the RPE is to process photoreceptor outer segments, which relies on the proper functioning of its endocytic pathways and endosomal trafficking. Exosomes and other extracellular vesicles from RPE are an essential part of these pathways and may be early indicators of cellular stress. To test the role of exosomes that may underlie the early stages of AMD, we used a polarized primary RPE cell culture model under chronic subtoxic oxidative stress. Unbiased proteomic analyses of highly purified basolateral exosomes from oxidatively stressed RPE cultures revealed changes in proteins involved in epithelial barrier integrity. There were also significant changes in proteins accumulating in the basal-side sub-RPE extracellular matrix during oxidative stress, that could be prevented with an inhibitor of exosome release. Thus, chronic subtoxic oxidative stress in primary RPE cultures induces changes in exosome content, including basal-side specific desmosome and hemidesmosome shedding via exosomes. These findings provide novel biomarkers of early cellular dysfunction and opportunity for therapeutic intervention in age-related retinal diseases, (e.g., AMD) and broadly from blood-CNS barriers in other neurodegenerative diseases.

6.
J Proteome Res ; 22(8): 2703-2713, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37493966

RESUMO

Photoreceptor cells generate neuronal signals in response to capturing light. This process, called phototransduction, takes place in a highly specialized outer segment organelle. There are significant discrepancies in the reported amounts of many proteins supporting this process, particularly those of low abundance, which limits our understanding of their molecular organization and function. In this study, we used quantitative mass spectrometry to simultaneously determine the abundances of 20 key structural and functional proteins residing in mouse rod outer segments. We computed the absolute number of molecules of each protein residing within an individual outer segment and the molar ratio among all 20 proteins. The molar ratios of proteins comprising three well-characterized constitutive complexes in outer segments differed from the established subunit stoichiometries of these complexes by less than 7%, highlighting the exceptional precision of our quantification. Overall, this study resolves multiple existing discrepancies regarding the outer segment abundances of these proteins, thereby advancing our understanding of how the phototransduction pathway functions as a single, well-coordinated molecular ensemble.


Assuntos
Proteínas , Segmento Externo da Célula Bastonete , Animais , Camundongos , Proteínas/metabolismo , Segmento Externo da Célula Bastonete/metabolismo , Transdução de Sinal Luminoso , Retina/metabolismo
7.
Elife ; 122023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37449984

RESUMO

The first steps of vision take place within a stack of tightly packed disc-shaped membranes, or 'discs', located in the outer segment compartment of photoreceptor cells. In rod photoreceptors, discs are enclosed inside the outer segment and contain deep indentations in their rims called 'incisures'. The presence of incisures has been documented in a variety of species, yet their role remains elusive. In this study, we combined traditional electron microscopy with three-dimensional electron tomography to demonstrate that incisures are formed only after discs become completely enclosed. We also observed that, at the earliest stage of their formation, discs are not round as typically depicted but rather are highly irregular in shape and resemble expanding lamellipodia. Using genetically manipulated mice and frogs and measuring outer segment protein abundances by quantitative mass spectrometry, we further found that incisure size is determined by the molar ratio between peripherin-2, a disc rim protein critical for the process of disc enclosure, and rhodopsin, the major structural component of disc membranes. While a high perpherin-2 to rhodopsin ratio causes an increase in incisure size and structural complexity, a low ratio precludes incisure formation. Based on these data, we propose a model whereby normal rods express a modest excess of peripherin-2 over the amount required for complete disc enclosure in order to ensure that this important step of disc formation is accomplished. Once the disc is enclosed, the excess peripherin-2 incorporates into the rim to form an incisure.


Assuntos
Rodopsina , Segmento Externo da Célula Bastonete , Animais , Camundongos , Rodopsina/metabolismo , Periferinas/metabolismo , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Visão Ocular
8.
bioRxiv ; 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37066355

RESUMO

The first steps of vision take place within a stack of tightly packed disc-shaped membranes, or "discs", located in the outer segment compartment of photoreceptor cells. In rod photoreceptors, discs are enclosed inside the outer segment and contain deep indentations in their rims called "incisures". The presence of incisures has been documented in a variety of species, yet their role remains elusive. In this study, we combined traditional electron microscopy with three-dimensional electron tomography to demonstrate that incisures are formed only after discs become completely enclosed. We also observed that, at the earliest stage of their formation, discs are not round as typically depicted but rather are highly irregular in shape and resemble expanding lamellipodia. Using genetically manipulated mice and frogs and measuring outer segment protein abundances by quantitative mass spectrometry, we further found that incisure size is determined by the molar ratio between peripherin-2, a disc rim protein critical for the process of disc enclosure, and rhodopsin, the major structural component of disc membranes. While a high perpherin-2 to rhodopsin ratio causes an increase in incisure size and structural complexity, a low ratio precludes incisure formation. Based on these data, we propose a model whereby normal rods express a modest excess of peripherin-2 over the amount required for complete disc enclosure in order to ensure that this important step of disc formation is accomplished. Once the disc is enclosed, the excess peripherin-2 incorporates into the rim to form an incisure.

9.
Proc Natl Acad Sci U S A ; 120(12): e2215011120, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36917665

RESUMO

The photoreceptor outer segment is a modified cilium filled with hundreds of flattened "disc" membranes responsible for efficient light capture. To maintain photoreceptor health and functionality, outer segments are continuously renewed through the addition of new discs at their base. This process is driven by branched actin polymerization nucleated by the Arp2/3 complex. To induce actin polymerization, Arp2/3 requires a nucleation promoting factor. Here, we show that the nucleation promoting factor driving disc morphogenesis is the pentameric WAVE complex and identify all protein subunits of this complex. We further demonstrate that the knockout of one of them, WASF3, abolishes actin polymerization at the site of disc morphogenesis leading to formation of disorganized membrane lamellae emanating from the photoreceptor cilium instead of an outer segment. These data establish that, despite the intrinsic ability of photoreceptor ciliary membranes to form lamellar structures, WAVE-dependent actin polymerization is essential for organizing these membranes into a proper outer segment.


Assuntos
Actinas , Cílios , Actinas/metabolismo , Cílios/química , Células Fotorreceptoras/metabolismo , Citoplasma , Morfogênese
10.
Elife ; 122023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598133

RESUMO

The small GTPase Arl3 is important for the enrichment of lipidated proteins to primary cilia, including the outer segment of photoreceptors. Human mutations in the small GTPase Arl3 cause both autosomal recessive and dominant inherited retinal dystrophies. We discovered that dominant mutations result in increased active G-protein-Arl3-D67V has constitutive activity and Arl3-Y90C is fast cycling-and their expression in mouse rods resulted in a displaced nuclear phenotype due to an aberrant Arl3-GTP gradient. Using multiple strategies, we go on to show that removing or restoring the Arl3-GTP gradient within the cilium is sufficient to rescue the nuclear migration defect. Together, our results reveal that an Arl3 ciliary gradient is involved in proper positioning of photoreceptor nuclei during retinal development.


Assuntos
Fatores de Ribosilação do ADP , Proteínas de Membrana , Células Fotorreceptoras Retinianas Bastonetes , Animais , Humanos , Camundongos , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Cílios/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Membrana/metabolismo , Transporte Proteico , Células Fotorreceptoras Retinianas Bastonetes/metabolismo
11.
bioRxiv ; 2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-36711880

RESUMO

Photoreceptor cells generate neuronal signals in response to capturing light. This process, called phototransduction, takes place in a highly specialized outer segment organelle. There are significant discrepancies in the reported amounts of many proteins supporting this process, particularly those of low abundance, which limits our understanding of their molecular organization and function. In this study, we used quantitative mass spectrometry to simultaneously determine the abundances of twenty key structural and functional proteins residing in mouse rod outer segments. We computed the absolute number of molecules of each protein residing within an individual outer segment and the molar ratio amongst all twenty proteins. The molar ratios of proteins comprising three well-characterized constitutive complexes in outer segments differed from the established subunit stoichiometries of these complexes by less than 7%, highlighting the exceptional precision of our quantification. Overall, this study resolves multiple existing discrepancies regarding the outer segment abundances of these proteins, thereby advancing our understanding of how the phototransduction pathway functions as a single, well-coordinated molecular ensemble.

12.
Front Cell Dev Biol ; 10: 886754, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557957

RESUMO

Clinical use of glucocorticoids is associated with increased intraocular pressure (IOP), a major risk factor for glaucoma. Glucocorticoids have been reported to induce changes in actin cytoskeletal organization, cell adhesion, extracellular matrix, fibrogenic activity, and mechanical properties of trabecular meshwork (TM) tissue, which plays a crucial role in aqueous humor dynamics and IOP homeostasis. However, we have a limited understanding of the molecular underpinnings regulating these myriad processes in TM cells. To understand how proteins, including cytoskeletal and cell adhesion proteins that are recognized to shuttle between the cytosolic and nuclear regions, influence gene expression and other cellular activities, we used proteomic analysis to characterize the nuclear protein fraction of dexamethasone (Dex) treated human TM cells. Treatment of human TM cells with Dex for 1, 5, or 7 days led to consistent increases (by ≥ two-fold) in the levels of various actin cytoskeletal regulatory, cell adhesive, and vesicle trafficking proteins. Increases (≥two-fold) were also observed in levels of Wnt signaling regulator (glypican-4), actin-binding chromatin modulator (BRG1) and nuclear actin filament depolymerizing protein (MICAL2; microtubule-associated monooxygenase, calponin and LIM domain containing), together with a decrease in tissue plasminogen activator. These changes were independently further confirmed by immunoblotting analysis. Interestingly, deficiency of BRG1 expression blunted the Dex-induced increases in the levels of some of these proteins in TM cells. In summary, these findings indicate that the widely recognized changes in actin cytoskeletal and cell adhesive attributes of TM cells by glucocorticoids involve actin regulated BRG1 chromatin remodeling, nuclear MICAL2, and glypican-4 regulated Wnt signaling upstream of the serum response factor/myocardin controlled transcriptional activity.

13.
J Clin Med ; 11(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35566463

RESUMO

Herpetic anterior uveitis-associated ocular inflammation is commonly manifested with ocular hypertension and glaucoma. Relative to other viruses, cytomegalovirus (CMV) positive hypertensive anterior uveitis is associated with high recurrences of uveitis, as well as with uncontrolled intraocular pressure (IOP) and a subsequent higher requirement for future glaucoma surgery. To gain novel insights into the pathogenesis of ocular hypertension in these patients, we investigated the proteome changes of the aqueous humor (AH) derived from the CMV hypertensive anterior uveitis (CMV-HAU; n = 10) patients and non-glaucoma (cataract; n = 10) patients using liquid chromatography with tandem mass spectrometry. Among a total of 562 proteins identified, fifty and fifteen proteins were significantly elevated and decreased, respectively, in the AH of CMV-HAU patients compared to the control subjects by ≥2 fold. Gene ontology (GO) enrichment and network analyses of elevated proteins revealed that the enrichment of protein was involved in the complement activation, the humoral immune response mediated by the circulating immunoglobulins, proteolysis, and platelet degranulation. In the AH of CMV-HAU, GDF (growth/differentiation factor)-15, the inflammatory marker belonging to the TGF-ß superfamily proteins, was significantly increased, while vasorin, an anti-TGF-ß protein, levels were decreased. The trabecular meshwork cells infected with CMV exhibited a significantly increased expression of inflammatory markers. Collectively, these data indicate increased complement factor associated inflammation and humoral immunity in CMV-HAU associated ocular hypertension.

14.
J Cell Mol Med ; 26(7): 2063-2075, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35170203

RESUMO

Glaucoma, one of the leading causes of irreversible blindness, is commonly associated with elevated intraocular pressure due to impaired aqueous humour (AH) drainage through the trabecular meshwork. The aetiological mechanisms contributing to impaired AH outflow, however, are poorly understood. Here, we identified the secreted form of vasorin, a transmembrane glycoprotein, as a common constituent of human AH by mass spectrometry and immunoblotting analysis. ELISA assay revealed a significant but marginal decrease in vasorin levels in the AH of primary open-angle glaucoma patients compared to non-glaucoma cataract patients. Human trabecular meshwork (HTM) cells were confirmed to express vasorin, which has been shown to possess anti-apoptotic and anti-TGF-ß activities. Treatment of HTM cells with vasorin induced actin stress fibres and focal adhesions and suppressed TGF-ß2-induced SMAD2/3 activation in HTM cells. Additionally, cobalt chloride-induced hypoxia stimulated a robust elevation in vasorin expression, and vasorin suppressed TNF-α-induced cell death in HTM cells. Taken together, these findings reveal the importance of vasorin in maintenance of cell survival, inhibition of TGF-ß induced biological responses in TM cells, and the decreasing trend in vasorin levels in the AH of glaucoma patients suggests a plausible role for vasorin in the pathobiology of ocular hypertension and glaucoma.


Assuntos
Proteínas de Transporte , Glaucoma de Ângulo Aberto , Glaucoma , Proteínas de Membrana , Malha Trabecular , Proteínas de Transporte/metabolismo , Células Cultivadas , Glaucoma/metabolismo , Glaucoma de Ângulo Aberto/metabolismo , Glicoproteínas/metabolismo , Humanos , Hipóxia/metabolismo , Proteínas de Membrana/metabolismo , Malha Trabecular/metabolismo , Fator de Crescimento Transformador beta2/metabolismo
15.
Mol Cell Proteomics ; 20: 100088, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33933680

RESUMO

The outer segment (OS) organelle of vertebrate photoreceptors is a highly specialized cilium evolved to capture light and initiate light response. The plasma membrane which envelopes the OS plays vital and diverse roles in supporting photoreceptor function and health. However, little is known about the identity of its protein constituents, as this membrane cannot be purified to homogeneity. In this study, we used the technique of protein correlation profiling to identify unique OS plasma membrane proteins. To achieve this, we used label-free quantitative MS to compare relative protein abundances in an enriched preparation of the OS plasma membrane with a preparation of total OS membranes. We have found that only five proteins were enriched at the same level as previously validated OS plasma membrane markers. Two of these proteins, TMEM67 and TMEM237, had not been previously assigned to this membrane, and one, embigin, had not been identified in photoreceptors. We further showed that embigin associates with monocarboxylate transporter MCT1 in the OS plasma membrane, facilitating lactate transport through this cellular compartment.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Simportadores/metabolismo , Animais , Bovinos , Camundongos Endogâmicos C57BL
16.
Biochim Biophys Acta Mol Basis Dis ; 1867(1): 165998, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33127476

RESUMO

The molecular and cellular basis for cataract development in mice lacking dystrophin, a scaffolding protein that links the cytoskeleton to the extracellular matrix, is poorly understood. In this study, we characterized lenses derived from the dystrophin-deficient mdx3cv mouse model. Expression of Dp71, a predominant isoform of dystrophin in the lens, was induced during lens fiber cell differentiation. Dp71 was found to co-distribute with dystroglycan, connexin-50 and 46, aquaporin-0, and NrCAM as a large cluster at the center of long arms of the hexagonal fibers. Although mdx3cv mouse lenses exhibited dramatically reduced levels of Dp71, only older lenses revealed punctate nuclear opacities compared to littermate wild type (WT) lenses. The levels of dystroglycan, syntrophin, and dystrobrevin which comprise the dystrophin-associated protein complex (DAPC), and NrCAM, connexin-50, and aquaporin-0, were significantly lower in the lens membrane fraction of adult mdx3cv mice compared to WT mice. Additionally, decreases were observed in myosin light chain phosphorylation and lens stiffness together with a significant elevation in the levels of utrophin, a functional homolog of dystrophin in mdx3cv mouse lenses compared to WT lenses. The levels of perlecan and laminin (ligands of α-dystroglycan) remained normal in dystrophin-deficient lens fibers. Taken together, although mdx3cv mouse lenses exhibit only minor defects in lens clarity possibly due to a compensatory increase in utrophin, the noted disruptions of DAPC, stability, and organization of membrane integral proteins of fibers, and stiffness of mdx3cv lenses reveal the importance of dystrophin and DAPC in maintaining lens clarity and function.


Assuntos
Distrofina/deficiência , Proteínas do Olho/biossíntese , Regulação da Expressão Gênica , Cristalino/metabolismo , Animais , Distrofina/metabolismo , Proteínas do Olho/genética , Camundongos , Camundongos Endogâmicos mdx
17.
J Biol Chem ; 295(39): 13601-13616, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32737203

RESUMO

Strong evidence suggests that dysregulated lipid metabolism involving dysfunction of the retinal pigmented epithelium (RPE) underlies the pathogenesis of age-related macular degeneration (AMD), the leading cause of irreversible blindness in the elderly. A hallmark of AMD is the overproduction of lipid- and protein-rich extracellular deposits that accumulate in the extracellular matrix (Bruch's membrane (BrM)) adjacent to the RPE. We analyzed apolipoprotein A-1 (ApoA-1)-containing lipoproteins isolated from BrM of elderly human donor eyes and found a unique proteome, distinct from high-density lipoprotein (HDL) isolated from donor plasma of the same individuals. The most striking difference is higher concentrations of ApoB and ApoE, which bind to glycosaminoglycans. We hypothesize that this interaction promotes lipoprotein deposition onto BrM glycosaminoglycans, initiating downstream effects that contribute to RPE dysfunction/death. We tested this hypothesis using two potential therapeutic strategies to alter the lipoprotein/protein profile of these extracellular deposits. First, we used short heparan sulfate oligosaccharides to remove lipoproteins already deposited in both the extracellular matrix of RPE cells and aged donor BrM tissue. Second, an ApoA-1 mimetic, 5A peptide, was demonstrated to modulate the composition and concentration of apolipoproteins secreted from primary porcine RPE cells. Significantly, in a mouse model of AMD, this 5A peptide altered the proteomic profile of circulating HDL and ameliorated some of the potentially harmful changes to the protein composition resulting from the high-fat, high-cholesterol diet in this model. Together, these results suggest that targeting HDL interactions with BrM represents a new strategy to slow AMD progression in humans.


Assuntos
Lipoproteínas HDL/metabolismo , Degeneração Macular/metabolismo , Animais , Apolipoproteína A-I/análise , Apolipoproteína A-I/metabolismo , Lâmina Basilar da Corioide/metabolismo , Células Cultivadas , Humanos , Lipoproteínas HDL/sangue , Lipoproteínas HDL/isolamento & purificação , Camundongos , Epitélio Pigmentado da Retina/metabolismo , Suínos
18.
Nat Commun ; 11(1): 3328, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620864

RESUMO

Genes encoding cell-surface proteins control nervous system development and are implicated in neurological disorders. These genes produce alternative mRNA isoforms which remain poorly characterized, impeding understanding of how disease-associated mutations cause pathology. Here we introduce a strategy to define complete portfolios of full-length isoforms encoded by individual genes. Applying this approach to neural cell-surface molecules, we identify thousands of unannotated isoforms expressed in retina and brain. By mass spectrometry we confirm expression of newly-discovered proteins on the cell surface in vivo. Remarkably, we discover that the major isoform of a retinal degeneration gene, CRB1, was previously overlooked. This CRB1 isoform is the only one expressed by photoreceptors, the affected cells in CRB1 disease. Using mouse mutants, we identify a function for this isoform at photoreceptor-glial junctions and demonstrate that loss of this isoform accelerates photoreceptor death. Therefore, our isoform identification strategy enables discovery of new gene functions relevant to disease.


Assuntos
Variação Genética , Proteínas de Membrana/genética , Células Fotorreceptoras de Vertebrados/metabolismo , Isoformas de RNA/genética , Retina/metabolismo , Degeneração Retiniana/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Isoformas de RNA/metabolismo , Retina/citologia , Retina/crescimento & desenvolvimento , Degeneração Retiniana/metabolismo , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
19.
Hum Mol Genet ; 29(12): 1986-1995, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32037441

RESUMO

Individuals with pseudoexfoliation (PEX) syndrome exhibit various connective tissue pathologies associated with dysregulated extracellular matrix homeostasis. PEX glaucoma is a common, aggressive form of open-angle glaucoma resulting from the deposition of fibrillary material in the conventional outflow pathway. However, the molecular mechanisms that drive pathogenesis and genetic risk remain poorly understood. PEX glaucoma-associated single-nucleotide polymorphisms are located in and affect activity of the promoter of LOXL1-AS1, a long non-coding RNA (lncRNA). Nuclear and non-nuclear lncRNAs regulate a host of biological processes, and when dysregulated, contribute to disease. Here we report that LOXL1-AS1 localizes to the nucleus where it selectively binds to the mRNA processing protein, heterogeneous nuclear ribonucleoprotein-L (hnRNPL). Both components of this complex are critical for the regulation of global gene expression in ocular cells, making LOXL1-AS1 a prime target for investigation in PEX syndrome and glaucoma.


Assuntos
Síndrome de Exfoliação/genética , Glaucoma de Ângulo Aberto/genética , RNA Longo não Codificante/genética , Ribonucleoproteínas/genética , Aminoácido Oxirredutases/genética , Síndrome de Exfoliação/patologia , Regulação da Expressão Gênica/genética , Predisposição Genética para Doença , Glaucoma de Ângulo Aberto/patologia , Humanos , Complexos Multiproteicos/genética , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética
20.
Proc Natl Acad Sci U S A ; 116(52): 27043-27052, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31843915

RESUMO

The light-sensitive outer segment of the vertebrate photoreceptor is a highly modified primary cilium filled with disc-shaped membranes that provide a vast surface for efficient photon capture. The formation of each disc is initiated by a ciliary membrane evagination driven by an unknown molecular mechanism reportedly requiring actin polymerization. Since a distinct F-actin network resides precisely at the site of disc morphogenesis, we employed a unique proteomic approach to identify components of this network potentially driving disc morphogenesis. The only identified actin nucleator was the Arp2/3 complex, which induces the polymerization of branched actin networks. To investigate the potential involvement of Arp2/3 in the formation of new discs, we generated a conditional knockout mouse lacking its essential ArpC3 subunit in rod photoreceptors. This knockout resulted in the complete loss of the F-actin network specifically at the site of disc morphogenesis, with the time course of ArpC3 depletion correlating with the time course of F-actin loss. Without the actin network at this site, the initiation of new disc formation is completely halted, forcing all newly synthesized membrane material to be delivered to the several nascent discs whose morphogenesis had already been in progress. As a result, these discs undergo uncontrolled expansion instead of normal enclosure, which leads to formation of unusual, large membrane whorls. These data suggest a model of photoreceptor disc morphogenesis in which Arp2/3 initiates disc formation in a "lamellipodium-like" mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...