Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37687649

RESUMO

The aim of this paper is to analyse the mechanical properties of butt joints between S355 steel and 6061-T6 aluminium alloy, as well as their relationship to changes in the structure of the material caused by welding. The effect of the tool offset was analysed in particular. For the analysis, tensile tests were carried out using macro- and mini-specimens taken from S355/AA6061-T6 joints and base materials. In addition, the macro- and microstructure of the joints was determined, the hardness profiles in the joints were analysed, and fractographic analysis of the fractures of the specimens was carried out. Based on the results of the macro- and microstructure examinations, typical friction stir welding (FSW) joint zones were characterised. The microstructure was observed in the interface line of the materials on the root side, the negative effect of which on the quality of the joint was confirmed by digital image correlation (DIC) strain analysis during the monotonic tensile test. The highest average value of su = 141 MPa for the entire joint was obtained for a 0.4 mm tool offset. The highest average value of su = 185 MPa for the selected joint layer was obtained for a 0.3 mm tool offset. Fracturing of the joint in the selected layer for the tool offset values of 0.3 mm and 0.4 mm occurred in the weld nugget zone (WNZ) where the lowest hardness was recorded.

2.
Materials (Basel) ; 15(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35161106

RESUMO

The temperature distributions, microstructure, and mechanical properties of tungsten composite with aluminum alloy friction-welded joints are presented in this paper. The effects of welding parameters on flash diameter, shortening, joint efficiency, microhardness, and microstructure were studied. Empirical temperature models for heating and cooling phases are proposed in this study. The predicted maximum temperatures at the periphery and in the axis of aluminum specimens were close to 550 °C and 480 °C at the interface, respectively. Moreover, the peak temperature in the weld zone was studied analytically. A maximum tensile strength of 234 MPa was reached for the following welding parameters: friction time of 3.5 s and friction force of 12.5 kN. The efficiency of the welded samples decreased after reaching the maximum value, with an increase of friction time and force. Maximum hardness at the interface and the half-radius reached 100 HV and 80 HV in the aluminum alloy joints, respectively. Dynamic recrystallisation areas on the aluminum alloy side were observed. Transmission electron microscopy observations of the microstructure in the aluminum alloy revealed the presence of a high dislocation density compared to the parent material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA