Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 46(19): 4793-4796, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598201

RESUMO

Functional nanocoatings have allowed hollow-core microstructured optical fibers (HC-MOFs) to be introduced into biosensing and photochemistry applications. However, common film characterization tools cannot evaluate the coating performance in situ. Here we report the all-optical noncontact characterization of the HC-MOF coating in real time. Self-assembled multilayers consisting of inversely charged polyelectrolytes (PEs) are deposited on the HC-MOF core capillary, and a linear spectral shift in the position of the fiber transmission minima with increasing the film thickness is observed as small as ∼1.5-6nm per single PE bilayer. We exemplify the practical performance of our approach by registering an increase in the coating thickness from 6±1 to 11±1nm per PE bilayer with increasing ionic strength in the PE solutions from 0.15 to 0.5 M NaCl. Additionally, we show real-time monitoring of pH-induced coating dissolving. Simplicity and high sensitivity make our approach a promising tool allowing noncontact analysis of the HC-MOF coating which is still challenging for other methods.


Assuntos
Fibras Ópticas
2.
Opt Lett ; 46(19): 4828-4831, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598210

RESUMO

Functional nanocoatings of hollow-core microstructured optical fibers (HC-MOFs) have extended the domain of their applications to biosensing and photochemistry. However, novel modalities typically come with increased optical losses since a significant surface roughness of functional layers gives rise to additional light scattering, restricting the performance of functionalization. Here, the technique that enables a biocompatible and removable nanocoating of HC-MOFs with low surface roughness is presented. The initial functional film is formed by a layer-by-layer assembly of bovine serum albumin (BSA) and tannic acid (TA). The alkaline etching at pH 9 results in the reduction of surface roughness from 26 nm to 3 nm and decreases fiber optical losses by three times. The nanocoating can be fully removed within 7 min of the treatment. Natural biocompatibility of BSA alongside antibacterial and antifouling properties of TA makes the presented nanocoating promising for biophotonic applications.

3.
Talanta ; 232: 122305, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34074383

RESUMO

A sensitive optical sensor based on hollow core microstructure optical fibers modified with deep eutectic solvent was produced for the first time. An easy procedure for the modification of hollow-core microstructure optical fibers with deep eutectic solvent was developed. Deep eutectic solvents based on natural monoterpenoids and fatty acids were investigated for glass surface modification. The sensor was used for the determination of non-steroidal anti-inflammatory drugs (mefenamic acid, diclofenac, flurbiprofen and ketoprofen) in human urine samples. The mechanism of the sensor response was investigated and discussed. Liquid-phase microextraction of non-steroidal anti-inflammatory drugs was implemented in deep eutectic solvent phase supported in the inner surface of hollow-core microstructure optical fibers followed by transmission spectra measurement in one analytical device. The preconcentration step performed directly in the analytical device allowed to obtain high sensitivity and selectivity. The limits of detection calculated from the calibration plots based on 3σ were 3 µg L-1 for all target analytes.

4.
Biosensors (Basel) ; 12(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35049647

RESUMO

Surface-enhanced Raman spectroscopy (SERS) is a powerful technique for biosensing. However, SERS analysis has several concerns: the signal is limited by a number of molecules and the area of the plasmonic substrate in the laser hotspot, and quantitative analysis in a low-volume droplet is confusing due to the change of concentration during quick drying. The usage of hollow-core microstructured optical fibers (HC-MOFs) is thought to be an effective way to improve SERS sensitivity and limit of detection through the effective irradiation of a small sample volume filling the fiber capillaries. In this paper, we used layer-by-layer assembly as a simple method for the functionalization of fiber capillaries by gold nanoparticles (seeds) with a mean diameter of 8 nm followed by UV-induced chloroauric acid reduction. We also demonstrated a simple and quick technique used for the analysis of the SERS platform formation at every stage through the detection of spectral shifts in the optical transmission of HC-MOFs. The enhancement of the Raman signal of a model analyte Rhodamine 6G was obtained using such type of SERS platform. Thus, a combination of nanostructured gold coating as a SERS-active surface and a hollow-core fiber as a microfluidic channel and a waveguide is perspective for point-of-care medical diagnosis based on liquid biopsy and exhaled air analysis.


Assuntos
Ouro , Nanopartículas Metálicas , Microfluídica , Fibras Ópticas , Análise Espectral Raman
5.
Light Sci Appl ; 9: 173, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33082942

RESUMO

The state of the art in optical biosensing is focused on reaching high sensitivity at a single wavelength by using any type of optical resonance. This common strategy, however, disregards the promising possibility of simultaneous measurements of a bioanalyte's refractive index over a broadband spectral domain. Here, we address this issue by introducing the approach of in-fibre multispectral optical sensing (IMOS). The operating principle relies on detecting changes in the transmission of a hollow-core microstructured optical fibre when a bioanalyte is streamed through it via liquid cells. IMOS offers a unique opportunity to measure the refractive index at 42 wavelengths, with a sensitivity up to ~3000 nm per refractive index unit (RIU) and a figure of merit reaching 99 RIU-1 in the visible and near-infra-red spectral ranges. We apply this technique to determine the concentration and refractive index dispersion for bovine serum albumin and show that the accuracy meets clinical needs.

6.
Opt Express ; 28(19): 27940-27950, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32988076

RESUMO

Limited operating bandwidth originated from strong absorption of glass materials in the infrared (IR) spectral region has hindered the potential applications of microstructured optical waveguide (MOW)-based sensors. Here, we demonstrate multimode waveguide regime up to 6.5 µm for the hollow-core (HC) MOWs drawn from borosilicate soft glass. Effective light guidance in central HC (diameter ∼240 µm) was observed from 0.4 to 6.5 µm despite high waveguide losses (0.4 and 1 dB/cm in near- and mid-IR, respectively). Additional optimization of the waveguide structure can potentially extend its operating range and decrease transmission losses, offering an attractive alternative to tellurite and chalcogenide-based fibers. Featuring the transparency in mid-IR, HC MOWs are promising candidates for the creation of MOW-based sensors for chemical and biomedical applications.

7.
Materials (Basel) ; 13(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092963

RESUMO

Microstructured optical fiber-based sensors (MOF) have been widely developed finding numerous applications in various fields of photonics, biotechnology, and medicine. High sensitivity to the refractive index variation, arising from the strong interaction between a guided mode and an analyte in the test, makes MOF-based sensors ideal candidates for chemical and biochemical analysis of solutions with small volume and low concentration. Here, we review the modern techniques used for the modification of the fiber's structure, which leads to an enhanced detection sensitivity, as well as the surface functionalization processes used for selective adsorption of target molecules. Novel functionalized MOF-based devices possessing these unique properties, emphasize the potential applications for fiber optics in the field of modern biophotonics, such as remote sensing, thermography, refractometric measurements of biological liquids, detection of cancer proteins, and concentration analysis. In this work, we discuss the approaches used for the functionalization of MOFs, with a focus on potential applications of the produced structures.

8.
Materials (Basel) ; 12(9)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31052408

RESUMO

Microstructured optical waveguides (MOW) are of great interest for chemical and biological sensing. Due to the high overlap between a guiding light mode and an analyte filling of one or several fiber capillaries, such systems are able to provide strong sensitivity with respect to variations in the refractive index and the thickness of filling materials. Here, we introduce a novel type of functionalized MOWs whose capillaries are coated by a layer-by-layer (LBL) approach, enabling the alternate deposition of silica particles (SiO2) at different diameters-300 nm, 420 nm, and 900 nm-and layers of poly(diallyldimethylammonium chloride) (PDDA). We demonstrate up to three covering bilayers consisting of 300-nm silica particles. Modifications in the MOW transmission spectrum induced by coating are measured and analyzed. The proposed technique of MOW functionalization allows one to reach novel sensing capabilities, including an increase in the effective sensing area and the provision of a convenient scaffold for the attachment of long molecules such as proteins.

9.
Opt Express ; 27(7): 9868-9878, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045135

RESUMO

Optical fibers are widely used in bioimaging systems as flexible endoscopes that are capable of low-invasive penetration inside hollow tissue cavities. Here, we report on the technique that allows magnetic resonance imaging (MRI) of hollow-core microstructured fibers (HC-MFs), which paves the way for combing MRI and optical bioimaging. Our approach is based on layer-by-layer assembly of oppositely charged polyelectrolytes and magnetite nanoparticles on the inner core surface of HC-MFs. Incorporation of magnetite nanoparticles into polyelectrolyte layers renders HC-MFs visible for MRI and induces the red-shift in their transmission spectra. Specifically, the transmission shifts up to 60 nm have been revealed for the several-layers composite coating, along with the high-quality contrast of HC-MFs in MRI scans. Our results shed light on marrying fiber-based endoscopy with MRI to open novel possibilities for minimally invasive clinical diagnostics and surgical procedures in vivo.

10.
Opt Express ; 22(9): 10366-79, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24921739

RESUMO

Fiber delivery of ultrashort pulses is important for multiphoton endoscopy. A chirped photonic crystal fiber (CPCF) is first characterized for its transmission bandwidth, propagation loss, and dispersion properties. Its extremely low dispersion (~150 fs(2)/m) enables the delivery of sub-30 fs pulses through a ~1 m-long CPCF. The CPCF is then incorporated into a multiphoton imaging system and its performance is demonstrated by imaging various biological samples including yew leaf, mouse tendon, and human skin. The imaging quality is further compared with images acquired by a multiphoton imaging system with free-space or hollow-core photonic band-gap fiber (PBF) delivery of pulses. Compared with free-space system, the CPCF delivered system maintains the same ultrashort pulsewidth and the image qualities are comparable. Compared with the PBF delivery, CPCF provides a 35 times shorter pulsewidth at the sample location, which results in a ~12 and 50 times improvement in two-photon excitation fluorescence (TPEF) and second harmonic generation (SHG) signals respectively. Our results show that CPCF has great potential for fiber delivery of ultrashort pulses for multiphoton endoscopy.

11.
Opt Lett ; 36(4): 442-4, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21326416

RESUMO

Delivery of sub-20-fs pulses through 80 cm of a chirped photonic crystal fiber with chirped-mirror precompensation is experimentally demonstrated. The pulses out of the fiber are within 15% of the bandwidth limit and exhibit a pulse energy of 1 nJ. Peak powers amount to 50 kW directly out of the fiber. Measurements indicate a good pulse contrast with little satellite content. The combination of a specially designed hollow fiber with chirped mirrors sets a new record for the pulse durations directly delivered through a fiber.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...