Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38496654

RESUMO

Mutations that reduce the function of MYT1L, a neuron-specific transcription factor, are associated with a syndromic neurodevelopmental disorder. Furthermore, MYT1L is routinely used as a proneural factor in fibroblast-to-neuron transdifferentiation. MYT1L has been hypothesized to play a role in the trajectory of neuronal specification and subtype specific maturation, but this hypothesis has not been directly tested, nor is it clear which neuron types are most impacted by MYT1L loss. In this study, we profiled 313,335 nuclei from the forebrains of wild-type and MYT1L-deficient mice at two developmental stages: E14 at the peak of neurogenesis and P21, when neurogenesis is complete, to examine the role of MYT1L levels in the trajectory of neuronal development. We found that MYT1L deficiency significantly disrupted the relative proportion of cortical excitatory neurons at E14 and P21. Significant changes in gene expression were largely concentrated in excitatory neurons, suggesting that transcriptional effects of MYT1L deficiency are largely due to disruption of neuronal maturation programs. Most effects on gene expression were cell autonomous and persistent through development. In addition, while MYT1L can both activate and repress gene expression, the repressive effects were most sensitive to haploinsufficiency, and thus more likely mediate MYT1L syndrome. These findings illuminate the intricate role of MYT1L in orchestrating gene expression dynamics during neuronal development, providing insights into the molecular underpinnings of MYT1L syndrome.

2.
Front Immunol ; 13: 931388, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248905

RESUMO

Intracranial inoculation of the neuroadapted JHM strain of mouse hepatitis virus (JHMV) into susceptible strains of mice results in acute encephalomyelitis followed by a cimmune-mediated demyelination similar to the human demyelinating disease multiple sclerosis (MS). JHMV infection of transgenic mice in which expression of the neutrophil chemoattractant chemokine CXCL1 is under the control of a tetracycline-inducible promoter active within GFAP-positive cells results in sustained neutrophil infiltration in the central nervous system (CNS) that correlates with an increase in spinal cord demyelination. We used single cell RNA sequencing (scRNAseq) and flow cytometry to characterize molecular and cellular changes within the CNS associated with increased demyelination in transgenic mice compared to control animals. These approaches revealed the presence of activated neutrophils as determined by expression of mRNA transcripts associated with neutrophil effector functions, including CD63, MMP9, S100a8, S100a9, and ASPRV1, as well as altered neutrophil morphology and protein expression. Collectively, these findings reveal insight into changes in the profile of neutrophils associated with increased white matter damage in mice persistently infected with a neurotropic coronavirus.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Vírus da Hepatite Murina , Substância Branca , Animais , Sistema Nervoso Central , Quimiocina CXCL1/metabolismo , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Transgênicos , Esclerose Múltipla/metabolismo , Neutrófilos/metabolismo , RNA Mensageiro , Tetraciclinas , Substância Branca/metabolismo
3.
J Virol ; 94(24)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32999036

RESUMO

Intracranial (i.c.) infection of susceptible C57BL/6 mice with the neurotropic JHM strain of mouse hepatitis virus (JHMV) (a member of the Coronaviridae family) results in acute encephalomyelitis and viral persistence associated with an immune-mediated demyelinating disease. The present study was undertaken to better understand the molecular pathways evoked during innate and adaptive immune responses as well as the chronic demyelinating stage of disease in response to JHMV infection of the central nervous system (CNS). Using single-cell RNA sequencing analysis (scRNAseq) on flow-sorted CD45-positive (CD45+) cells enriched from brains and spinal cords of experimental mice, we demonstrate the heterogeneity of the immune response as determined by the presence of unique molecular signatures and pathways involved in effective antiviral host defense. Furthermore, we identify potential genes involved in contributing to demyelination as well as remyelination being expressed by both microglia and macrophages. Collectively, these findings emphasize the diversity of the immune responses and molecular networks at defined stages following viral infection of the CNS.IMPORTANCE Understanding the immunological mechanisms contributing to both host defense and disease following viral infection of the CNS is of critical importance given the increasing number of viruses that are capable of infecting and replicating within the nervous system. With this in mind, the present study was undertaken to evaluate the molecular signatures of immune cells within the CNS at defined times following infection with a neuroadapted murine coronavirus using scRNAseq. This approach has revealed that the immunological landscape is diverse, with numerous immune cell subsets expressing distinct mRNA expression profiles that are, in part, dictated by the stage of infection. In addition, these findings reveal new insight into cellular pathways contributing to control of viral replication as well as to neurologic disease.


Assuntos
Infecções do Sistema Nervoso Central/imunologia , Infecções do Sistema Nervoso Central/virologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Interações Hospedeiro-Patógeno/imunologia , Vírus da Hepatite Murina/fisiologia , Animais , Infecções do Sistema Nervoso Central/genética , Infecções do Sistema Nervoso Central/patologia , Biologia Computacional/métodos , Infecções por Coronavirus/genética , Infecções por Coronavirus/patologia , Encefalomielite/genética , Encefalomielite/imunologia , Encefalomielite/patologia , Encefalomielite/virologia , Perfilação da Expressão Gênica , Antígenos H-2/genética , Antígenos H-2/imunologia , Interações Hospedeiro-Patógeno/genética , Imunidade Inata , Camundongos , Análise de Sequência de RNA , Análise de Célula Única
4.
Glia ; 68(11): 2345-2360, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32449994

RESUMO

The present study examines functional contributions of microglia in host defense, demyelination, and remyelination following infection of susceptible mice with a neurotropic coronavirus. Treatment with PLX5622, an inhibitor of colony stimulating factor 1 receptor (CSF1R) that efficiently depletes microglia, prior to infection of the central nervous system (CNS) with the neurotropic JHM strain of mouse hepatitis virus (JHMV) resulted in increased mortality compared with control mice that correlated with impaired control of viral replication. Single cell RNA sequencing (scRNASeq) of CD45+ cells isolated from the CNS revealed that PLX5622 treatment resulted in muted CD4+ T cell activation profile that was associated with decreased expression of transcripts encoding MHC class II and CD86 in macrophages but not dendritic cells. Evaluation of spinal cord demyelination revealed a marked increase in white matter damage in PLX5622-treated mice that corresponded with elevated expression of transcripts encoding disease-associated proteins Osteopontin (Spp1), Apolipoprotein E (Apoe), and Triggering receptor expressed on myeloid cells 2 (Trem2) that were enriched within macrophages. In addition, PLX5622 treatment dampened expression of Cystatin F (Cst7), Insulin growth factor 1 (Igf1), and lipoprotein lipase (Lpl) within macrophage populations which have been implicated in promoting repair of damaged nerve tissue and this was associated with impaired remyelination. Collectively, these findings argue that microglia tailor the CNS microenvironment to enhance control of coronavirus replication as well as dampen the severity of demyelination and influence repair.


Assuntos
Encéfalo/imunologia , Infecções por Coronavirus/imunologia , Interações Hospedeiro-Patógeno/imunologia , Microglia/imunologia , Vírus da Hepatite Murina/imunologia , Compostos Orgânicos/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/virologia , Infecções por Coronavirus/induzido quimicamente , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/virologia
5.
DNA Cell Biol ; 39(1): 3-7, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31851535

RESUMO

The chemokine receptor CXCR2 is a receptor for CXC chemokines, including CXCL1 and CXCL2. CXCR2 is expressed by resident cells of the central nervous system, including neurons, microglia, oligodendrocyte progenitor cells (OPCs), and oligodendrocytes. CXCR2 signaling is important in regulating OPC biology with regard to positional migration and myelination during development. More recently, studies have argued that CXCR2 is involved in controlling events related to remyelination after experimentally induced demyelination. This review examines the concept that targeting CXCR2 may offer a novel therapeutic target for promoting remyelination.


Assuntos
Sistema Nervoso Central/metabolismo , Doenças Desmielinizantes/genética , Modelos Animais de Doenças , Receptores de Interleucina-8B/genética , Remielinização/genética , Transdução de Sinais/genética , Animais , Sistema Nervoso Central/citologia , Doenças Desmielinizantes/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Receptores de Interleucina-8B/metabolismo
6.
J Virol ; 93(18)2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31243125

RESUMO

CXCR2 is a chemokine receptor expressed on oligodendroglia that has been implicated in the pathogenesis of neuroinflammatory demyelinating diseases as well as enhancement of the migration, proliferation, and myelin production by oligodendroglia. Using an inducible proteolipid protein (Plp) promoter-driven Cre-loxP recombination system, we were able to assess how timed ablation of Cxcr2 in oligodendroglia affected disease following intracranial infection with the neurotropic JHM strain of mouse hepatitis virus (JHMV). Generation of Plp-Cre-ER(T)::Cxcr2flox/flox transgenic mice (termed Cxcr2-CKO mice) allows for Cxcr2 to be silenced in oligodendrocytes in adult mice following treatment with tamoxifen. Ablation of oligodendroglia Cxcr2 did not influence clinical severity in response to intracranial infection with JHMV. Infiltration of activated T cells or myeloid cells into the central nervous system (CNS) was not affected, nor was the ability to control viral infection. In addition, the severity of demyelination was similar between tamoxifen-treated mice and vehicle-treated controls. Notably, deletion of Cxcr2 resulted in increased remyelination, as assessed by g-ratio (the ratio of the inner axonal diameter to the total outer fiber diameter) calculation, compared to that in vehicle-treated control mice. Collectively, our findings argue that CXCR2 signaling in oligodendroglia is dispensable with regard to contributing to neuroinflammation, but its deletion enhances remyelination in a preclinical model of the human demyelinating disease multiple sclerosis (MS).IMPORTANCE Signaling through the chemokine receptor CXCR2 in oligodendroglia is important for developmental myelination in rodents, while chemical inhibition or nonspecific genetic deletion of CXCR2 appears to augment myelin repair in animal models of the human demyelinating disease multiple sclerosis (MS). To better understand the biology of CXCR2 signaling on oligodendroglia, we generated transgenic mice in which Cxcr2 is selectively ablated in oligodendroglia upon treatment with tamoxifen. Using a viral model of neuroinflammation and demyelination, we demonstrate that genetic silencing of CXCR2 on oligodendroglia did not affect clinical disease, neuroinflammation, or demyelination, yet there was increased remyelination. These findings support and extend previous findings suggesting that targeting CXCR2 may offer a therapeutic avenue for enhancing remyelination in patients with demyelinating diseases.


Assuntos
Esclerose Múltipla/metabolismo , Bainha de Mielina/metabolismo , Receptores de Interleucina-8B/metabolismo , Remielinização/fisiologia , Animais , Axônios/metabolismo , Axônios/patologia , Diferenciação Celular/fisiologia , Linhagem Celular , Sistema Nervoso Central/patologia , Doenças Desmielinizantes/virologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Esclerose Múltipla/patologia , Vírus da Hepatite Murina/metabolismo , Neuroglia/metabolismo , Neuroglia/patologia , Oligodendroglia/metabolismo , Receptores de Interleucina-8B/genética , Transdução de Sinais , Células-Tronco , Tamoxifeno/farmacologia
7.
J Clin Med ; 8(1)2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30577473

RESUMO

Multiple sclerosis (MS) is a disease of the central nervous system (CNS) characterized by chronic neuroinflammation, axonal damage, and demyelination. Cellular components of the adaptive immune response are viewed as important in initiating formation of demyelinating lesions in MS patients. This notion is supported by preclinical animal models, genome-wide association studies (GWAS), as well as approved disease modifying therapies (DMTs) that suppress clinical relapse and are designed to impede infiltration of activated lymphocytes into the CNS. Nonetheless, emerging evidence demonstrates that the innate immune response e.g., neutrophils can amplify white matter damage through a variety of different mechanisms. Indeed, using a model of coronavirus-induced neurologic disease, we have demonstrated that sustained neutrophil infiltration into the CNS of infected animals correlates with increased demyelination. This brief review highlights recent evidence arguing that targeting the innate immune response may offer new therapeutic avenues for treatment of demyelinating disease including MS.

8.
Eur J Immunol ; 48(7): 1199-1210, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29697856

RESUMO

Increasing evidence points to an important role for neutrophils in participating in the pathogenesis of the human demyelinating disease MS and the animal model EAE. Therefore, a better understanding of the signals controlling migration of neutrophils as well as evaluating the role of these cells in demyelination is important to define cellular components that contribute to disease in MS patients. In this study, we examined the functional role of the chemokine CXCL1 in contributing to neuroinflammation and demyelination in EAE. Using transgenic mice in which expression of CXCL1 is under the control of a tetracycline-inducible promoter active within glial fibrillary acidic protein-positive cells, we have shown that sustained CXCL1 expression within the CNS increased the severity of clinical and histologic disease that was independent of an increase in the frequency of encephalitogenic Th1 and Th17 cells. Rather, disease was associated with enhanced recruitment of CD11b+ Ly6G+ neutrophils into the spinal cord. Targeting neutrophils resulted in a reduction in demyelination arguing for a role for these cells in myelin damage. Collectively, these findings emphasize that CXCL1-mediated attraction of neutrophils into the CNS augments demyelination suggesting that this signaling pathway may offer new targets for therapeutic intervention.


Assuntos
Sistema Nervoso Central/imunologia , Quimiocina CXCL1/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Neutrófilos/imunologia , Medula Espinal/imunologia , Animais , Autoantígenos/imunologia , Antígeno CD11b/metabolismo , Células Cultivadas , Quimiocina CXCL1/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Terapia de Alvo Molecular , Glicoproteína Mielina-Oligodendrócito/imunologia , Inflamação Neurogênica , Infiltração de Neutrófilos , Fragmentos de Peptídeos/imunologia , Transdução de Sinais , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...