Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 15(2): 1767-803, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24469314

RESUMO

Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches. We use our recently devised chain breakage/closure (CBC) local move set in the bond-/torsion angle space with the constant-bond-length approximation (CBLA) for the phospholipid dipalmitoylphosphatidylcholine (DPPC). We demonstrate rapid conformational equilibration for a single DPPC molecule, as assessed by calculation of molecular energies and entropies. We also show transition from a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated by the electron density profile, head group orientation, area per lipid, and whole-lipid displacements. We discuss the potential of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol.


Assuntos
Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Modelos Moleculares , Método de Monte Carlo , Conformação Molecular , Simulação de Dinâmica Molecular
2.
J Phys Chem A ; 112(18): 4294-307, 2008 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-18386856

RESUMO

Push-pull substituted fluorenes are considered for use as dynamic solvation probes in polynucleotides. Their fluorescence band is predicted (by simulations) to show weak spectral oscillations on the subpicosecond time scale depending on the nucleotide sequence. The oscillations reflect the local far-infrared spectrum of the environment around the probe molecule. A connection is provided by the continuum theory of polar solvation which, however, neglects molecular aspects. We examine the latter using acetonitrile solution as a test case. A collective librational solvent mode at 100 cm(-1) is observed with 2-amino-7-nitrofluorene, 2-dimethylamino-7-nitrofluorene, 2-hydroxy-7-nitrofluorene, and its 2'-deoxyriboside. Different strengths of the oscillation indicate that rotational friction of nearby acetonitrile molecules depends on the solute structure or that H bonding is involved in launching the librational coherence. Polar solvation in methanol is used for comparison. With hydroxynitrofluorenes, the observation window is limited by intersystem crossing for which rates are reported. A prominent excited-state absorption band of nitrofluorenes at 430 nm can be used to monitor polar solvation. Structural and electronic relaxation pathways are discussed with the help of quantum chemical calculations.


Assuntos
Fluorenos/química , Ribose/análogos & derivados , Solventes/química , Absorção , Acetonitrilas/química , Sequência de Bases , Fluorescência , Ligação de Hidrogênio , Metanol/química , Método de Monte Carlo , Oligonucleotídeos/química , Oligonucleotídeos/genética , Ribose/química , Termodinâmica , Fatores de Tempo
3.
J Comput Chem ; 27(3): 309-15, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16355439

RESUMO

This article describes a method for solving the geometric closure problem for simplified models of nucleic acid structures by using the constant bond lengths approximation. The resulting chain breakage/closure equations, formulated in the space of variable torsion and bond angles, are easy to solve, and have only two solutions. The analytical simplicity is in contrast with the high complexity of the closure problem in the torsion angle space with at most 16 solutions, which has been dealt with by several authors and was solved analytically by Wu and Deem (J. Chem. Phys. 1999, 111, 6625). The discussion on the choice of variables and associated Jacobians is focussed on the question of how conformational equilibration is affected in Monte Carlo simulations of molecular systems. In addition to the closure of the phosphate backbone, it is necessary to also solve the closure problem for the five-membered flexible furanose sugar ring. Explicit closure equations and the resulting Jacobians are given both for the complete four-variable model of the furanose ring and simulations in the phase-amplitude space of the five-membered ring, which are based on the approximate two-variable model of furanose introduced by Gabb et al. (J. Comput. Chem. 1995, 16, 667). The suggested closure algorithm can be combined with collective variables defined by translations and rotations of the monomeric nucleotide units. In comparison with simple internal coordinate moves, the resulting concerted moves describe local structural changes that have high acceptance rates and enable fast conformational equilibration. Appropriate molecular models are put forward for prospective Monte Carlo simulations of nucleic acids, but can be easily adapted to other biomolecular systems, such as proteins and lipid structures in biological membranes.


Assuntos
Algoritmos , Conformação de Ácido Nucleico , Ácidos Nucleicos/química , Método de Monte Carlo
4.
Nucleic Acids Res ; 33(22): 7048-57, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16352865

RESUMO

The dynamics of biological processes depend on the structure and flexibility of the interacting molecules. In particular, the conformational diversity of DNA allows for large deformations upon binding. Drug-DNA interactions are of high pharmaceutical interest since the mode of action of anticancer, antiviral, antibacterial and other drugs is directly associated with their binding to DNA. A reliable prediction of drug-DNA binding at the atomic level by molecular docking methods provides the basis for the design of new drug compounds. Here, we propose a novel Monte Carlo (MC) algorithm for drug-DNA docking that accounts for the molecular flexibility of both constituents and samples the docking geometry without any prior binding-site selection. The binding of the antimalarial drug methylene blue at the DNA minor groove with a preference of binding to AT-rich over GC-rich base sequences is obtained in MC simulations in accordance with experimental data. In addition, the transition between two drug-DNA-binding modes, intercalation and minor-groove binding, has been achieved in dependence on the DNA base sequence. The reliable ab initio prediction of drug-DNA binding achieved by our new MC docking algorithm is an important step towards a realistic description of the structure and dynamics of molecular recognition in biological systems.


Assuntos
Algoritmos , DNA/química , Desenho de Fármacos , Antimaláricos/química , Sítios de Ligação , Simulação por Computador , Ligantes , Azul de Metileno/química , Modelos Moleculares , Método de Monte Carlo , Conformação de Ácido Nucleico
5.
Structure ; 13(10): 1499-509, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16216581

RESUMO

DNA bending is an important structural feature for indirect readout in protein-DNA recognition. The binding of papillomavirus E2 transcription factors to their DNA binding sites is associated with DNA bending, providing an attractive model system to study the origins of sequence-specific DNA bending. The consensus E2 target is of the general form ACCGN(4)CGGT with a variable four base pair region. We applied a new all-atom Monte Carlo (MC) algorithm that combines effective sampling with fast conformational equilibration. The resulting MC ensembles resemble the corresponding high-resolution crystal structures very well. Distinct bending is observed for the E2-DNA binding site with a central AATT linker in contrast to an essentially straight DNA with a central ACGT linker. Contributions of specific base pair steps to the overall bending are shown in terms of local structural parameters. The analysis of conformational substates provides new insights into the energetic origins of intrinsic DNA bending.


Assuntos
Simulação por Computador , DNA Viral/metabolismo , Método de Monte Carlo , Conformação de Ácido Nucleico , Proteínas Oncogênicas Virais/metabolismo , Algoritmos , Pareamento de Bases , Sítios de Ligação , Cristalografia por Raios X , DNA Viral/química , Humanos , Proteínas Oncogênicas Virais/química , Conformação Proteica , Fatores de Transcrição/metabolismo
6.
Biophys J ; 89(6): 3721-40, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16169978

RESUMO

Molecular dynamics (MD) simulations including water and counterions on B-DNA oligomers containing all 136 unique tetranucleotide basepair steps are reported. The objective is to obtain the calculated dynamical structure for at least two copies of each case, use the results to examine issues with regard to convergence and dynamical stability of MD on DNA, and determine the significance of sequence context effects on all unique dinucleotide steps. This information is essential to understand sequence effects on DNA structure and has implications on diverse problems in the structural biology of DNA. Calculations were carried out on the 136 cases embedded in 39 DNA oligomers with repeating tetranucleotide sequences, capped on both ends by GC pairs and each having a total length of 15 nucleotide pairs. All simulations were carried out using a well-defined state-of-the-art MD protocol, the AMBER suite of programs, and the parm94 force field. In a previous article (Beveridge et al. 2004. Biophysical Journal. 87:3799-3813), the research design, details of the simulation protocol, and informatics issues were described. Preliminary results from 15 ns MD trajectories were presented for the d(CpG) step in all 10 unique sequence contexts. The results indicated the sequence context effects to be small for this step, but revealed that MD on DNA at this length of trajectory is subject to surprisingly persistent cooperative transitions of the sugar-phosphate backbone torsion angles alpha and gamma. In this article, we report detailed analysis of the entire trajectory database and occurrence of various conformational substates and its impact on studies of context effects. The analysis reveals a possible direct correspondence between the sequence-dependent dynamical tendencies of DNA structure and the tendency to undergo transitions that "trap" them in nonstandard conformational substates. The difference in mean of the observed basepair step helicoidal parameter distribution with different flanking sequence sometimes differs by as much as one standard deviation, indicating that the extent of sequence effects could be significant. The observations reveal that the impact of a flexible dinucleotide such as CpG could extend beyond the immediate basepair neighbors. The results in general provide new insight into MD on DNA and the sequence-dependent dynamical structural characteristics of DNA.


Assuntos
Pareamento de Bases , Ilhas de CpG , DNA/química , Repetições de Microssatélites , Modelos Químicos , Modelos Moleculares , Análise de Sequência de DNA/métodos , Sequência de Bases , Simulação por Computador , DNA/análise , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Relação Estrutura-Atividade
7.
Biophys J ; 87(6): 3799-813, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15326025

RESUMO

We describe herein a computationally intensive project aimed at carrying out molecular dynamics (MD) simulations including water and counterions on B-DNA oligomers containing all 136 unique tetranucleotide base sequences. This initiative was undertaken by an international collaborative effort involving nine research groups, the "Ascona B-DNA Consortium" (ABC). Calculations were carried out on the 136 cases imbedded in 39 DNA oligomers with repeating tetranucleotide sequences, capped on both ends by GC pairs and each having a total length of 15 nucleotide pairs. All MD simulations were carried out using a well-defined protocol, the AMBER suite of programs, and the parm94 force field. Phase I of the ABC project involves a total of approximately 0.6 mus of simulation for systems containing approximately 24,000 atoms. The resulting trajectories involve 600,000 coordinate sets and represent approximately 400 gigabytes of data. In this article, the research design, details of the simulation protocol, informatics issues, and the organization of the results into a web-accessible database are described. Preliminary results from 15-ns MD trajectories are presented for the d(CpG) step in its 10 unique sequence contexts, and issues of stability and convergence, the extent of quasiergodic problems, and the possibility of long-lived conformational substates are discussed.


Assuntos
DNA/química , Modelos Químicos , Modelos Moleculares , Oligodesoxirribonucleotídeos/química , Sequência de Bases , Simulação por Computador , Cinética , Dados de Sequência Molecular , Movimento (Física) , Conformação de Ácido Nucleico , Relação Estrutura-Atividade
8.
J Biomol Struct Dyn ; 21(5): 699-711, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-14769063

RESUMO

The results presented in this paper on methylene blue (MB) binding to DNA with AT alternating base sequence complement the data obtained in two former modeling studies of MB binding to GC alternating DNA. In the light of the large amount of experimental data for both systems, this theoretical study is focused on a detailed energetic analysis and comparison in order to understand their different behavior. Since experimental high-resolution structures of the complexes are not available, the analysis is based on energy minimized structural models of the complexes in different binding modes. For both sequences, four different intercalation structures and two models for MB binding in the minor and major groove have been proposed. Solvent electrostatic effects were included in the energetic analysis by using electrostatic continuum theory, and the dependence of MB binding on salt concentration was investigated by solving the non-linear Poisson-Boltzmann equation. We find that the relative stability of the different complexes is similar for the two sequences, in agreement with the interpretation of spectroscopic data. Subtle differences, however, are seen in energy decompositions and can be attributed to the change from symmetric 5'-YpR-3' intercalation to minor groove binding with increasing salt concentration, which is experimentally observed for the AT sequence at lower salt concentration than for the GC sequence. According to our results, this difference is due to the significantly lower non-electrostatic energy for the minor groove complex with AT alternating DNA, whereas the slightly lower binding energy to this sequence is caused by a higher deformation energy of DNA. The energetic data are in agreement with the conclusions derived from different spectroscopic studies and can also be structurally interpreted on the basis of the modeled complexes. The simple static modeling technique and the neglect of entropy terms and of non-electrostatic solute-solvent interactions, which are assumed to be nearly constant for the compared complexes of MB with DNA, seem to be justified by the results.


Assuntos
DNA/metabolismo , Azul de Metileno/metabolismo , Sítios de Ligação , Dicroísmo Circular , DNA/química , Azul de Metileno/química , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...