Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiol Oncol ; 57(2): 201-210, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37341199

RESUMO

BACKGROUND: High grade gliomas are associated with cognitive problems. The aim of the study was to investigate cognitive functioning in a cohort of patients with high grade glioma, according to isocitrate dehydrogenase (IDH) and methyl guanine methyl transferase (MGMT) status and other clinical characteristics. PATIENTS AND METHODS: The patients with the high-grade glioma treated in Slovenia in given period of time were included in study. Postoperatively they completed neuropsychological assessment consisting of Slovenian Verbal Learning Test, Slovenian Controlled Oral Word Association Test, Trail Making Test Part A and B and self-evaluation questionnaire. We analysed results (z-scores and dichotomized results) also according to IDH mutation and MGMT methylation. We examined differences between groups using T-test, Mann-Whitney U, χ2 and Kendall's Tau tests. RESULTS: Out of 275 patients in the cohort, we included 90. Forty-six percent of patients were unable to participate due to poor performance status and other conditions related to tumour. Patients with the IDH mutation were younger, with better performance status, larger proportions of grade III tumours and MGMT methylation. In this group cognitive functioning is significantly better in the domains of immediate recall, short delayed recall and delayed recall, and in the fields of executive functioning and recognition. There were no differences in cognitive functioning in regard to MGMT status. Grade III tumours were associated with more frequent MGMT methylation. Self-assessment proved week tool, associated only with immediate recall. CONCLUSIONS: We found no differences in cognitive functioning according to MGMT status, but cognition was better when IDH mutation was present. In a cohort study of patients with high-grade glioma, almost half were unable to participate in a study, which points to an overrepresentation of patients with better cognitive functioning in the research.


Assuntos
Glioma , Humanos , Estudos de Coortes , Glioma/complicações , Glioma/genética , Cognição , Isocitrato Desidrogenase , Mutação
2.
Croat Med J ; 64(6): 383-390, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38168519

RESUMO

AIM: To investigate the prognostic factors of survival in patients with high-grade gliomas without isocitrate dehydrogenase-1 (IDH) mutation and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation. METHODS: The study enrolled Slovenian patients with high-grade gliomas. Postoperatively, they completed a battery of neuropsychological tests. Demographics and clinical data were collected. The results of cognitive tests were converted to standardized scores and dichotomized based on impairment. A univariate Cox proportional hazard regression model was used to determine clinical predictors, and a multivariate Cox model was used to determine the prognostic value of cognitive test results. Kaplan-Meier curves were constructed, and survival was compared with the log rank test. RESULTS: The study enrolled 49 patients with IDH wild-type, MGMT-unmethylated high-grade gliomas. The median time to progression was 9.92 months (7.25, 12.59) and the overall median survival was 12.19 months (8.95, 15.4). Age and the extent of surgery were significant prognostic factors for survival. After controlling for these factors, cognitive functioning in the domain of verbal fluency remained a significant predictor of survival outcomes. CONCLUSION: Cognitive functioning in the domain of verbal fluency was associated with overall survival independently of age and the extent of surgery. Cognitive functioning could be an important stratifying tool in this group of patients lacking other predictors.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Prognóstico , Neoplasias Encefálicas/genética , Metilação de DNA , Isocitrato Desidrogenase/genética , Biomarcadores Tumorais , Glioma/genética , Glioma/cirurgia , Mutação , Cognição , Estudos Retrospectivos , Metilases de Modificação do DNA/genética , Proteínas Supressoras de Tumor/genética , Enzimas Reparadoras do DNA/genética
3.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35743228

RESUMO

The evaluation of treatment response remains a challenge in glioma cases because the neuro oncological therapy can lead to the development of treatment-related changes (TRC) that mimic true progression (TP). Positron emission tomography (PET) using O-(2-[18F] fluoroethyl-)-L-tyrosine (18F-FET) has been shown to be a useful tool for detecting TRC and TP. We assessed the diagnostic performance of different 18F-FET PET segmentation approaches and different imaging biomarkers for differentiation between late TRC and TP in glioma patients. Isocitrate dehydrogenase (IDH) status was evaluated as a predictor of disease outcome. In our study, the proportion of TRC in IDH wild type (IDHwt) and IDH mutant (IDHm) subgroups was without significant difference. We found that the diagnostic value of static and dynamic biomarkers of 18F-FET PET for discrimination between TRC and TP depends on the IDH mutation status of the tumor. Dynamic 18F-FET PET acquisition proved helpful in the IDH wild type (IDHwt) subgroup, as opposed to the IDH mutant (IDHm) subgroup, providing an early indication to discontinue dynamic imaging in the IDHm subgroup.


Assuntos
Neoplasias Encefálicas , Glioma , Biomarcadores , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Imageamento por Ressonância Magnética , Mutação , Recidiva Local de Neoplasia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Tirosina/genética
4.
Cancers (Basel) ; 13(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298634

RESUMO

Glioblastoma is the most common and malignant brain malignancy worldwide, with a 10-year survival of only 0.7%. Aggressive multimodal treatment is not enough to increase life expectancy and provide good quality of life for glioblastoma patients. In addition, despite decades of research, there are no established biomarkers for early disease diagnosis and monitoring of patient response to treatment. High throughput sequencing technologies allow for the identification of unique molecules from large clinically annotated datasets. Thus, the aim of our study was to identify significant molecular changes between short- and long-term glioblastoma survivors by transcriptome RNA sequencing profiling, followed by differential pathway-activation-level analysis. We used data from the publicly available repositories The Cancer Genome Atlas (TCGA; number of annotated cases = 135) and Chinese Glioma Genome Atlas (CGGA; number of annotated cases = 218), and experimental clinically annotated glioblastoma tissue samples from the Institute of Pathology, Faculty of Medicine in Ljubljana corresponding to 2-58 months overall survival (n = 16). We found one differential gene for long noncoding RNA CRNDE whose overexpression showed correlation to poor patient OS. Moreover, we identified overlapping sets of congruently regulated differential genes involved in cell growth, division, and migration, structure and dynamics of extracellular matrix, DNA methylation, and regulation through noncoding RNAs. Gene ontology analysis can provide additional information about the function of protein- and nonprotein-coding genes of interest and the processes in which they are involved. In the future, this can shape the design of more targeted therapeutic approaches.

5.
Ther Adv Med Oncol ; 12: 1758835920915302, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32426045

RESUMO

BACKGROUND: Glioblastoma is a particularly common and very aggressive primary brain tumour. One of the main causes of therapy failure is the presence of glioblastoma stem cells that are resistant to chemotherapy and radiotherapy, and that have the potential to form new tumours. This study focuses on validation of eight novel antigens, TRIM28, nucleolin, vimentin, nucleosome assembly protein 1-like 1 (NAP1L1), mitochondrial translation elongation factor (EF-TU) (TUFM), dihydropyrimidinase-related protein 2 (DPYSL2), collapsin response mediator protein 1 (CRMP1) and Aly/REF export factor (ALYREF), as putative glioblastoma targets, using nanobodies. METHODS: Expression of these eight antigens was analysed at the cellular level by qPCR, ELISA and immunocytochemistry, and in tissues by immunohistochemistry. The cytotoxic effects of the nanobodies were determined using AlamarBlue and water-soluble tetrazolium tests. Annexin V/propidium iodide tests were used to determine apoptotsis/necrosis of the cells in the presence of the nanobodies. Cell migration assays were performed to determine the effects of the nanobodies on cell migration. RESULTS: NAP1L1 and CRMP1 were significantly overexpressed in glioblastoma stem cells in comparison with astrocytes and glioblastoma cell lines at the mRNA and protein levels. Vimentin, DPYSL2 and ALYREF were overexpressed in glioblastoma cell lines only at the protein level. The functional part of the study examined the cytotoxic effects of the nanobodies on glioblastoma cell lines. Four of the nanobodies were selected in terms of their specificity towards glioblastoma cells and protein overexpression: anti-vimentin (Nb79), anti-NAP1L1 (Nb179), anti-TUFM (Nb225) and anti-DPYSL2 (Nb314). In further experiments to optimise the nanobody treatment schemes, to increase their effects, and to determine their impact on migration of glioblastoma cells, the anti-TUFM nanobody showed large cytotoxic effects on glioblastoma stem cells, while the anti-vimentin, anti-NAP1L1 and anti-DPYSL2 nanobodies were indicated as agents to target mature glioblastoma cells. The anti-vimentin nanobody also had significant effects on migration of mature glioblastoma cells. CONCLUSION: Nb79 (anti-vimentin), Nb179 (anti-NAP1L1), Nb225 (anti-TUFM) and Nb314 (anti-DPYSL2) nanobodies are indicated for further examination for cell targeting. The anti-TUFM nanobody, Nb225, is particularly potent for inhibition of cell growth after long-term exposure of glioblastoma stem cells, with minor effects seen for astrocytes. The anti-vimentin nanobody represents an agent for inhibition of cell migration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA