Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 326(3): H511-H521, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38133621

RESUMO

Left atrial (LA) blood flow plays an important role in diseases such as atrial fibrillation (AF) and atrial cardiomyopathy since alterations in the blood flow might lead to thrombus formation and stroke. Using traditional techniques, such as echocardiography, atrial flow velocities can be measured at the pulmonary veins and the mitral valve, but a comprehensive understanding of the three-dimensional atrial flow field is missing. Previously, ventricular flow has been analyzed using flow component analysis, revealing new insights into ventricular flow and function. Thus, the aim of this project was to develop a comprehensive flow component analysis method for the LA and explore its utility in 21 patients with paroxysmal atrial fibrillation compared with a control group of 8 participants. The flow field was derived from time-resolved CT acquired during sinus rhythm using computational fluid dynamics. Flow components were computed from particle tracking. We identified six atrial flow components: conduit, reservoir, delayed ejection, retained inflow, residual volume, and pulmonary vein backflow. It was shown that conduit flow, defined as blood entering and leaving the LA within the same diastolic phase, exists in most subjects. Although the volume of conduit and reservoir is similar in patients with paroxysmal AF in sinus rhythm and controls, the volume of the other components is increased in paroxysmal AF. Comprehensive quantification of LA flow using flow component analysis makes atrial blood flow quantifiable, thus facilitating investigation of mechanisms underlying atrial dysfunction and can increase understanding of atrial blood flow in disease progression and stroke risk.NEW & NOTEWORTHY We developed a new comprehensive approach to atrial blood component analysis that includes both conduit flow and residual volume and compared the flow components of atrial fibrillation (AF) patients in sinus rhythm with controls. Conduit and reservoir flow were similar between the groups, whereas components with longer residence time in the left atrium were increased in the AF group. This could add to the pathophysiological understanding of atrial diseases and possibly clinical management.


Assuntos
Fibrilação Atrial , Acidente Vascular Cerebral , Humanos , Fibrilação Atrial/diagnóstico por imagem , Átrios do Coração/diagnóstico por imagem , Ecocardiografia , Hemodinâmica
3.
Front Cardiovasc Med ; 10: 1219021, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649669

RESUMO

Introduction: Atrial fibrillation (AF) is associated with an increased risk of stroke, often caused by thrombi that form in the left atrium (LA), and especially in the left atrial appendage (LAA). The underlying mechanism is not fully understood but is thought to be related to stagnant blood flow, which might be present despite sinus rhythm. However, measuring blood flow and stasis in the LAA is challenging due to its small size and low velocities. We aimed to compare the blood flow and stasis in the left atrium of paroxysmal AF patients with controls using computational fluid dynamics (CFD) simulations. Methods: The CFD simulations were based on time-resolved computed tomography including the patient-specific cardiac motion. The pipeline allowed for analysis of 21 patients with paroxysmal AF and 8 controls. Stasis was estimated by computing the blood residence time. Results and Discussion: Residence time was elevated in the AF group (p < 0.001). Linear regression analysis revealed that stasis was strongest associated with LA ejection ratio (p < 0.001, R2 = 0.68) and the ratio of LA volume and left ventricular stroke volume (p < 0.001, R2 = 0.81). Stroke risk due to LA thrombi could already be elevated in AF patients during sinus rhythm. In the future, patient specific CFD simulations may add to the assessment of this risk and support diagnosis and treatment.

4.
J Magn Reson Imaging ; 56(5): 1393-1403, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35128754

RESUMO

BACKGROUND: Epicardial adipose tissue (EAT) may induce left atrium (LA) wall inflammation and promote LA fibrosis. Therefore, simultaneous assessment of these two important atrial fibrillation (AF) risk factors would be desirable. PURPOSE: To perform a comprehensive evaluation of 3D Dixon water-fat separated late gadolinium enhancement (LGE-Dixon) MRI by analysis of repeatability and systematic comparison with reference methods for assessment of fibrosis and fat. STUDY TYPE: Prospective. POPULATION: Twenty-eight, 10, and 7 patients, respectively, with clinical indications for cardiac MRI. FIELD STRENGTH/SEQUENCE: A 1.5-T scanner, inversion recovery multiecho spoiled gradient echo. ASSESSMENT: Twenty-eight patients (age 58 ± 19 years, 15 males) were scanned using LGE-Dixon. A 5-point Likert-type scale was used to grade the image quality. Another 10 patients (age 46 ± 19 years, 9 males) were scanned using LGE-Dixon and 3D proton density Dixon (PD-Dixon). Finally, seven patients (age 62 ± 14 years, 4 males) were scanned using LGE-Dixon and conventional LGE. The scan time, intraobserver and interobserver variability, and levels of agreement were assessed. STATISTICAL TESTS: Student's t-test, one-way ANOVA, and Mann-Whitney U-test were used; P < 0.05 was considered significant, intraclass correlation coefficient (ICC). RESULTS: The scan time (minutes:seconds) for LGE-Dixon (n = 28) was 5:01 ± 1:40. ICC values for intraobserver and interobserver measurements of LA wall fibrosis percentage were 0.98 (95% CI, 0.97-0.99) and 0.97 (95% CI, 0.94-0.99) while of EAT were 0.92 (95% CI, 0.82-0.97) and 0.90 (95% CI, 0.80-0.95). The agreement for LA fibrosis percentage between the LGE-Dixon and the conventional LGE was 0.92 (95% CI, 0.66-0.99) and for EAT volume between the LGE-Dixon and the PD-Dixon was 0.93 (95% CI, 0.72-0.98). CONCLUSION: LA fibrosis and EAT can be assessed simultaneously using LGE-Dixon. This method allows a high level of intraobserver and interobserver repeatability as well as agreement with reference methods and can be performed in a clinically feasible scan time. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY STAGE: 3.


Assuntos
Fibrilação Atrial , Gadolínio , Tecido Adiposo/diagnóstico por imagem , Adulto , Idoso , Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/patologia , Meios de Contraste , Fibrose , Átrios do Coração/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Prótons , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA