Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 2(2): 648-658, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36133225

RESUMO

Silver (Ag) nanoparticles are commonly used in consumer products due to their antimicrobial properties. Here we studied the impact of Ag nanoparticles on immune responses by using cell lines of monocyte/macrophage and lung epithelial cell origin, respectively. Short-term experiments (24 h) showed that Ag nanoparticles reduced the lipopolysaccharide (LPS)-induced secretion of pro-inflammatory cytokines in THP-1 cells under serum-free conditions. ICP-MS analysis revealed that cellular uptake of Ag was higher under these conditions. Long-term exposure (up to 6 weeks) of BEAS-2B cells to Ag nanoparticles also suppressed pro-inflammatory cytokine production following a brief challenge with LPS. Experiments using reporter cells revealed that Ag nanoparticles as well as AgNO3 inhibited LPS-triggered Toll-like receptor (TLR) signaling. Furthermore, RNA-sequencing of BEAS-2B cells indicated that Ag nanoparticles affected TLR signaling pathways. In conclusion, Ag nanoparticles reduced the secretion of pro-inflammatory cytokines in response to LPS, likely as a result of the release of silver ions leading to an interference with TLR signaling. This could have implications for the use of Ag nanoparticles as antibacterial agents. Further in vivo studies are warranted to study this.

2.
Part Fibre Toxicol ; 15(1): 32, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30016969

RESUMO

BACKGROUND: Genotoxicity is an important toxicological endpoint due to the link to diseases such as cancer. Therefore, an increased understanding regarding genotoxicity and underlying mechanisms is needed for assessing the risk with exposure to nanoparticles (NPs). The aim of this study was to perform an in-depth investigation regarding the genotoxicity of well-characterized Ni and NiO NPs in human bronchial epithelial BEAS-2B cells and to discern possible mechanisms. Comparisons were made with NiCl2 in order to elucidate effects of ionic Ni. METHODS: BEAS-2B cells were exposed to Ni and NiO NPs, as well as NiCl2, and uptake and cellular dose were investigated by transmission electron microscopy (TEM) and inductively coupled plasma mass spectrometry (ICP-MS). The NPs were characterized in terms of surface composition (X-ray photoelectron spectroscopy), agglomeration (photon cross correlation spectroscopy) and nickel release in cell medium (ICP-MS). Cell death (necrosis/apoptosis) was investigated by Annexin V-FITC/PI staining and genotoxicity by cytokinesis-block micronucleus (cytome) assay (OECD 487), chromosomal aberration (OECD 473) and comet assay. The involvement of intracellular reactive oxygen species (ROS) and calcium was explored using the fluorescent probes, DCFH-DA and Fluo-4. RESULTS: NPs were efficiently taken up by the BEAS-2B cells. In contrast, no or minor uptake was observed for ionic Ni from NiCl2. Despite differences in uptake, all exposures (NiO, Ni NPs and NiCl2) caused chromosomal damage. Furthermore, NiO NPs were most potent in causing DNA strand breaks and generating intracellular ROS. An increase in intracellular calcium was observed and modulation of intracellular calcium by using inhibitors and chelators clearly prevented the chromosomal damage. Chelation of iron also protected against induced damage, particularly for NiO and NiCl2. CONCLUSIONS: This study has revealed chromosomal damage by Ni and NiO NPs as well as Ni ionic species and provides novel evidence for a calcium-dependent mechanism of cyto- and genotoxicity.


Assuntos
Cálcio/metabolismo , Aberrações Cromossômicas/induzido quimicamente , Pulmão/efeitos dos fármacos , Mutagênicos/toxicidade , Nanopartículas/toxicidade , Níquel/toxicidade , Morte Celular/efeitos dos fármacos , Linhagem Celular , Ensaio Cometa , Dano ao DNA , Humanos , Pulmão/patologia , Propriedades de Superfície
3.
Environ Mol Mutagen ; 59(3): 211-222, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29243303

RESUMO

Nickel (Ni) compounds are classified as carcinogenic to humans but the underlying mechanisms are still poorly understood. Furthermore, effects related to nanoparticles (NPs) of Ni have not been fully elucidated. The aim of this study was to investigate genotoxicity and mutagenicity of Ni and NiO NPs and compare the effect to soluble Ni from NiCl2 . We employed different models; i.e., exposure of (1) human bronchial epithelial cells (HBEC) followed by DNA strand break analysis (comet assay and γ-H2AX staining); (2) six different mouse embryonic stem (mES) reporter cell lines (ToxTracker) that are constructed to exhibit fluorescence upon the induction of various pathways of relevance for (geno)toxicity and cancer; and (3) mES cells followed by mutagenicity testing (Hprt assay). The results showed increased DNA strand breaks (comet assay) for the NiO NPs and at higher doses also for the Ni NPs whereas no effects were observed for Ni ions/complexes from NiCl2 . By employing the reporter cell lines, oxidative stress was observed as the main toxic mechanism and protein unfolding occurred at cytotoxic doses for all three Ni-containing materials. Oxidative stress was also detected in the HBEC cells following NP-exposure. None of these materials induced the reporter related to direct DNA damage and stalled replication forks. A small but statistically significant increase in Hprt mutations was observed for NiO but only at one dose. We conclude that Ni and NiO NPs show more pronounced (geno)toxic effects compared to Ni ions/complexes, indicating more serious health concerns. Environ. Mol. Mutagen. 59:211-222, 2018. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.


Assuntos
Ensaio Cometa/métodos , Proteínas de Fluorescência Verde/metabolismo , Histonas/metabolismo , Hipoxantina Fosforribosiltransferase/metabolismo , Nanopartículas Metálicas/toxicidade , Testes de Mutagenicidade/métodos , Níquel/toxicidade , Animais , Bioensaio , Brônquios/efeitos dos fármacos , Brônquios/patologia , Sobrevivência Celular , Células Cultivadas , Dano ao DNA , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Genes Reporter , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Mutagênicos/toxicidade , Mutação , Estresse Oxidativo/efeitos dos fármacos
4.
Phys Chem Chem Phys ; 19(41): 28037-28043, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28994441

RESUMO

The structural behavior in aqueous mixtures of negatively charged silver nanoparticles (Ag NPs) together with the cationic surfactants cetyltrimethylammonium bromide (CTAB) and dodecyltrimethylammonium chloride (DTAC), respectively, has been investigated using SANS and SAXS. From our SANS data analysis we are able to conclude that the surfactants self-assemble into micellar clusters surrounding the Ag NPs. We are able to quantify our results by means of fitting experimental SANS data with a model based on cluster formation of micelles with very good agreement. Based on our experimental results, we propose a novel mechanism for the stabilization of negatively charged Ag NPs in a solution of positively charged surfactants in which cluster formation of micelles in the vicinity of the particles prevents the particles from aggregating. Complementary SAXS and DLS measurements further support this novel way of explaining stabilization of small hydrophilic nanoparticles in surfactant-containing solutions.

5.
PLoS One ; 12(7): e0181735, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28749997

RESUMO

The zeta potential (ZP) is a parameter commonly used to characterize metal nanoparticles (NPs) in solution. Such determinations are for example performed in nanotoxicology since the ZP influences e.g. the interaction between cells and different biomolecules. Four case studies on different metal NPs (Cu and Zn NPs, and citrate capped Ag NPs) are presented in this study in order to provide guidance on how to accurately interpret and report ZP data. Solutions of high ionic strength (150 mM NaCl) induce a higher extent of particle agglomeration (elucidated with Ag NPs) when compared with conditions in 10 mM NaCl, which further complicates the prediction of the ZP due to e.g. sedimentation and broadening of the zeta potential distribution. The particle size is seldom included specifically in the standard ways of determining ZP (Hückel and Smoluchowski approximations). However corrections are possible when considering approximations of the Henry function. This was seen to improve the analysis of NPs, since there are cases when both the Hückel and the Smulochowski approximations are invalid. In biomolecule-containing cell media (BEGM), the signal from e.g. proteins may interfere with the measured ZP of the NPs. The intensity distribution of the ZP of both the blank solution and the solution containing NPs should hence be presented in addition to the mean value. Due to an increased ionic strength for dissolving of metal NPs (exemplified by Zn NPs), the released metal ions must be considered when interpreting the zeta potential measurements. In this work the effect was however negligible, as the particle size was several hundred nm, conditions that made the Smoluchowski approximation valid despite an increased ionic strength. However, at low ionic strengths (mM range) and small-sized NPs (tens of nm), the effect of released metal ions can influence the choice of model for determining the zeta potential. Sonication of particle dispersions influences not only the extent of metal release but also the outermost surface oxide composition, which often results in an increased ZP. Surface compositional changes were illustrated for sonicated and non-sonicated Cu NPs. In all, it can be concluded that accurate measurements and interpretations are possible in most cases by collecting and reporting complementary data on characteristics such as particle size, ZP distributions, blank sample information, and particle oxide composition.


Assuntos
Nanopartículas Metálicas/química , Coloides , Cobre/química , Nanopartículas Metálicas/ultraestrutura , Concentração Osmolar , Tamanho da Partícula , Prata/química , Soluções , Zinco/química
6.
Toxicol In Vitro ; 29(7): 1711-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26028147

RESUMO

From the increasing societal use of nanoparticles (NPs) follows the necessity to understand their potential toxic effects. This requires an in-depth understanding of the relationship between their physicochemical properties and their toxicological behavior. The aim of the present work was to study the toxicity of Cu and CuO NPs toward the leukemic cell line HL60. The toxicity was explored in terms of mitochondrial damage, DNA damage, oxidative DNA damage, cell death and reactive oxygen species (ROS) formation. Particle characteristics and copper release were specifically investigated in order to gain an improved understanding of prevailing toxic mechanisms. The Cu NPs revealed higher toxicity compared with both CuO NPs and dissolved copper (CuCl2), as well as a more rapid copper release compared with CuO NPs. Mitochondrial damage was induced by Cu NPs already after 2 h exposure. Cu NPs induced oxidation at high levels in an acellular ROS assay, and a small increase of intracellular ROS was observed. The increase of DNA damage was limited. CuO NPs did not induce any mitochondrial damage up to 6 h of exposure. No acellular ROS was induced by the CuO NPs, and the levels of intracellular ROS and DNA damage were limited after 2 h exposure. Necrosis was the main type of cell death observed after 18 h exposure to CuO NP and dissolved copper.


Assuntos
Cobre/toxicidade , Nanopartículas Metálicas/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Células HL-60 , Humanos , Leucemia , Mitocôndrias/efeitos dos fármacos , Necrose/induzido quimicamente , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo
7.
Environ Sci Technol ; 48(13): 7314-22, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24892700

RESUMO

From an increased use of silver nanoparticles (Ag NPs) as an antibacterial in consumer products follows a need to assess the environmental interaction and fate of their possible dispersion and release of silver. This study aims to elucidate an exposure scenario of the Ag NPs potentially released from, for example, impregnated clothing by assessing the release of silver and changes in particle properties in sequential contact with synthetic sweat, laundry detergent solutions, and freshwater, simulating a possible transport path through different aquatic media. The release of ionic silver is addressed from a water chemical perspective, compared with important particle and surface characteristics. Released amounts of silver in the sequential exposures were significantly lower, approximately a factor of 2, than the sum of each separate exposure. Particle characteristics such as speciation (both of Ag ionic species and at the Ag NP surface) influenced the release of soluble silver species present on the surface, thereby increasing the total silver release in the separate exposures compared with sequential immersions. The particle stability had no drastic impact on the silver release as most of the Ag NPs were unstable in solution. The silver release was also influenced by a lower pH (increased release of silver), and cotransported zeolites (reduced silver in solution).


Assuntos
Detergentes/química , Nanopartículas Metálicas/química , Prata/análise , Suor/química , Água/química , Adsorção , Filtração , Água Doce/química , Tamanho da Partícula , Solubilidade , Soluções , Sonicação , Análise Espectral Raman , Poluentes Químicos da Água/análise , Zeolitas/química
8.
Langmuir ; 30(14): 3928-38, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24697326

RESUMO

The influence of adding salt on the self-assembly in sodium octyl sulfate (SOS)-rich mixtures of the anionic surfactant SOS and the cationic surfactant hexadecyltrimethylammonium bromide (CTAB) have been investigated with the two complementary techniques, small-angle neutron scattering (SANS) and cryo-transmission electron microscopy. We are able to conclude that addition of a substantial amount of inert salt, NaBr, mainly has three effects on the structural behaviors: (i) the micelles become much larger at the transition from micelles to bilayers, (ii) the fraction of bilayer disks increases at the expense of vesicles, and (iii) bilayer aggregates perforated with holes are formed in the most diluted samples. A novel form factor valid for perforated bilayer vesicles and disks is introduced for the first time and, as a result, we are able to directly observe the presence of perforated bilayers by means of fitting SANS data with an appropriate model. Moreover, we are able to conclude that the morphology of bilayer aggregates changes according to the following sequence of different bilayer topologies, vesicles → disks → perforated bilayers, as the electrolyte concentration is increased and surfactant mole fraction in the bilayer aggregates approaches equimolarity. We are able to rationalize this sequence of transitions as a result of a monotonous increase of the bilayer saddle-splay constant (k(c)(bi)) with decreasing influence from electrostatics, in agreement with theoretical predictions as deduced from the Poisson-Boltzmann theory.

9.
Part Fibre Toxicol ; 11: 11, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-24529161

RESUMO

BACKGROUND: Silver nanoparticles (AgNPs) are currently one of the most manufactured nanomaterials. A wide range of toxicity studies have been performed on various AgNPs, but these studies report a high variation in toxicity and often lack proper particle characterization. The aim of this study was to investigate size- and coating-dependent toxicity of thoroughly characterized AgNPs following exposure of human lung cells and to explore the mechanisms of toxicity. METHODS: BEAS-2B cells were exposed to citrate coated AgNPs of different primary particle sizes (10, 40 and 75 nm) as well as to 10 nm PVP coated and 50 nm uncoated AgNPs. The particle agglomeration in cell medium was investigated by photon cross correlation spectroscopy (PCCS); cell viability by LDH and Alamar Blue assay; ROS induction by DCFH-DA assay; genotoxicity by alkaline comet assay and γH2AX foci formation; uptake and intracellular localization by transmission electron microscopy (TEM); and cellular dose as well as Ag release by atomic absorption spectroscopy (AAS). RESULTS: The results showed cytotoxicity only of the 10 nm particles independent of surface coating. In contrast, all AgNPs tested caused an increase in overall DNA damage after 24 h assessed by the comet assay, suggesting independent mechanisms for cytotoxicity and DNA damage. However, there was no γH2AX foci formation and no increased production of intracellular reactive oxygen species (ROS). The reasons for the higher toxicity of the 10 nm particles were explored by investigating particle agglomeration in cell medium, cellular uptake, intracellular localization and Ag release. Despite different agglomeration patterns, there was no evident difference in the uptake or intracellular localization of the citrate and PVP coated AgNPs. However, the 10 nm particles released significantly more Ag compared with all other AgNPs (approx. 24 wt% vs. 4-7 wt%) following 24 h in cell medium. The released fraction in cell medium did not induce any cytotoxicity, thus implying that intracellular Ag release was responsible for the toxicity. CONCLUSIONS: This study shows that small AgNPs (10 nm) are cytotoxic for human lung cells and that the toxicity observed is associated with the rate of intracellular Ag release, a 'Trojan horse' effect.


Assuntos
Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Corantes , Ensaio Cometa , Meios de Cultura , Dano ao DNA , Endocitose/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Imunofluorescência , Humanos , L-Lactato Desidrogenase/metabolismo , Pulmão/citologia , Pulmão/metabolismo , Microscopia Eletrônica de Transmissão , Oxazinas , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Prata/metabolismo , Espectrofotometria Atômica , Espectrofotometria Ultravioleta , Xantenos
10.
Langmuir ; 29(38): 11834-48, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23984704

RESUMO

The self-assembly in SOS-rich mixtures of the anionic surfactant sodium octyl sulfate (SOS) and the cationic surfactant hexadecyltrimethylammonium bromide (CTAB) has been investigated with the complementary techniques small-angle neutron scattering (SANS) and cryo-transmission electron microscopy (cryo-TEM). Both techniques confirm the simultaneous presence of open and closed bilayer structures in highly diluted samples as well as the existence of small globular and large elongated micelles at higher concentrations. However, the two techniques sometimes differ with respect to which type of aggregates is present in a particular sample. In particular, globular or wormlike micelles are sometimes observed with cryo-TEM in the vicinity of the micelle-to-bilayer transition, although only bilayers are present according to SANS and the samples appear bluish to the eye. A similar discrepancy has previously been reported but could not be satisfactorily rationalized. On the basis of our comparison between in situ (SANS) and ex situ (cryo-TEM) experimental techniques, we suggest that this discrepancy appears mainly as a result of the non-negligible amount of surfactant adsorbed at interfaces of the thin sample film created during the cryo-TEM specimen preparation. Moreover, from our detailed SANS data analysis, we are able to observe the unusually high amount of free surfactant monomers present in SOS-rich mixtures of SOS and CTAB, and the experimental results give excellent agreement with model calculations based on the Poisson-Boltzmann mean field theory. Our careful comparison between model calculations and experiments has enabled us to rationalize the dramatic microstructural transformations frequently observed upon simply diluting mixtures of an anionic and a cationic surfactant.

11.
Langmuir ; 29(28): 8882-91, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23758058

RESUMO

The stability of silver nanoparticles (Ag NPs) potentially released from clothing during a laundry cycle and their interactions with laundry-relevant surfactants [anionic (LAS), cationic (DTAC), and nonionic (Berol)] have been investigated. Surface interactions between Ag NPs and surfactants influence their speciation and stability. In the absence of surfactants as well as in the presence of LAS, the negatively charged Ag NPs were stable in solution for more than 1 day. At low DTAC concentrations (≤1 mM), DTAC-Ag NP interactions resulted in charge neutralization and formation of agglomerates. The surface charge of the particles became positive at higher concentrations due to a bilayer type formation of DTAC that prevents from agglomeration due to repulsive electrostatic forces between the positively charged colloids. The adsorption of Berol was enhanced when above its critical micelle concentration (cmc). This resulted in a surface charge close to zero and subsequent agglomeration. Extended DLVO theory calculations were in compliance with observed findings. The stability of the Ag NPs was shown to depend on the charge and concentration of the adsorbed surfactants. Such knowledge is important as it may influence the subsequent transport of Ag NPs through different chemical transients and thus their potential bioavailability and toxicity.


Assuntos
Lavanderia , Nanopartículas Metálicas/química , Prata/química , Tensoativos/química , Coloides , Concentração de Íons de Hidrogênio , Propriedades de Superfície , Fatores de Tempo , Água/química
12.
Anal Bioanal Chem ; 399(1): 483-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21046086

RESUMO

In order to determine the saccharide content of plant tissues, we studied a new non-destructive and fast analytical method that we call "direct quantitative proton nuclear magnetic resonance spectroscopy" (d q (1)H NMR): the application of quantitative proton nuclear magnetic resonance spectroscopy (q (1)H NMR) to non modified plant tissues along with capillary tubes containing a reference compound (for quantification) and deuterium oxide (for locking). Using this method, the saccharide content of samples of carrot (Daucus carota L.) roots was compared to the results given from similar samples by the formerly published q (1)H NMR determination of extracts obtained by the O'Donoghue/Davis method. The content in glucose and sucrose is significantly higher with the direct method than when an extraction step is included; the content in fructose is not significantly different. If a possible detection of saccharides included in glycosylated biological compounds is to be excluded, a more complete extraction of saccharides is probably obtained using the direct method.


Assuntos
Carboidratos/análise , Daucus carota/química , Espectroscopia de Ressonância Magnética/métodos , Extratos Vegetais/análise , Espectroscopia de Ressonância Magnética/instrumentação , Raízes de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA