Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(6): 2950-2962, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36912102

RESUMO

Cytosine-rich DNA regions can form four-stranded structures based on hemi-protonated C.C+ pairs, called i-motifs (iMs). Using CD, UV absorption, NMR spectroscopy, and DSC calorimetry, we show that model (CnT3)3Cn (Cn) sequences adopt iM under neutral or slightly alkaline conditions for n > 3. However, the iMs are formed with long-lasting kinetics under these conditions and melt with significant hysteresis. Sequences with n > 6 melt in two or more separate steps, indicating the presence of different iM species, the proportion of which is dependent on temperature and incubation time. At ambient temperature, kinetically favored iMs of low stability are formed, most likely consisting of short C.C+ blocks. These species act as kinetic traps and prevent the assembly of thermodynamically favored, fully C.C+ paired iMs. A higher temperature is necessary to unfold the kinetic forms and enable their substitution by a slowly developing thermodynamic structure. This complicated kinetic partitioning process considerably slows down iM folding, making it much slower than the timeframes of biological reactions and, therefore, unlikely to have any biological relevance. Our data suggest kinetically driven iM species as more likely to be biologically relevant than thermodynamically most stable iM forms.


Assuntos
DNA , Conformação de Ácido Nucleico , Cinética , Motivos de Nucleotídeos , DNA/genética , DNA/química , Concentração de Íons de Hidrogênio
2.
Biochim Biophys Acta Gen Subj ; 1864(9): 129651, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32492502

RESUMO

BACKGROUND: The i-motif is a tetrameric DNA structure based on the formation of hemiprotonated cytosine-cytosine (C+.C) base pairs. i-motifs are widely used in nanotechnology. In biological systems, i-motifs are involved in gene regulation and in control of genome integrity. In vivo, the i-motif forming sequences are subjects of epigenetic modifications, particularly 5-cytosine methylation. In plants, natively occurring methylation patterns lead to a complex network of C+.C, 5mC+.C and 5mC+.5mC base-pairs in the i-motif stem. The impact of complex methylation patterns (CMPs) on i-motif formation propensity is currently unknown. METHODS: We employed CD and UV-absorption spectroscopies, native PAGE, thermal denaturation and quantum-chemical calculations to analyse the effects of native, native-like, and non-native CMPs in the i-motif stem on the i-motif stability and pKa. RESULTS: CMPs have strong influence on i-motif stability and pKa and influence these parameters in sequence-specific manner. In contrast to a general belief, i) CMPs do not invariably stabilize the i-motif, and ii) when the CMPs do stabilize the i-motif, the extent of the stabilization depends (in a complex manner) on the number and pattern of symmetric 5mC+.5mC or asymmetric 5mC+.C base pairs in the i-motif stem. CONCLUSIONS: CMPs can be effectively used to fine-tune i-motif properties. Our data support the notion of epigenetic modifications as a plausible control mechanism of i-motif formation in vivo. GENERAL SIGNIFICANCE: Our results have implications in epigenetic regulation of telomeric DNA in plants and highlight the potential and limitations of engineered patterning of cytosine methylations on the i-motif scaffold in nanotechnological applications.


Assuntos
Citosina/metabolismo , Metilação de DNA , DNA de Plantas/genética , Epigênese Genética , Nanotecnologia , Motivos de Nucleotídeos/genética , Telômero/genética , Sequência de Bases , DNA de Plantas/química , Modelos Moleculares
3.
Nucleic Acids Res ; 47(5): 2177-2189, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30715498

RESUMO

The formation of intercalated motifs (iMs) - secondary DNA structures based on hemiprotonated C.C+ pairs in suitable cytosine-rich DNA sequences, is reflected by typical changes in CD and UV absorption spectra. By means of spectroscopic methods, electrophoresis, chemical modifications and other procedures, we characterized iM formation and stability in sequences with different cytosine block lengths interrupted by various numbers and types of nucleotides. Particular attention was paid to the formation of iMs at pH conditions close to neutral. We identified the optimal conditions and minimal requirements for iM formation in DNA sequences, and addressed gaps and inaccurate data interpretations in existing studies to specify principles of iM formation and modes of their folding.


Assuntos
DNA/química , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Pareamento de Bases , Sequência de Bases , Citosina/química , Citosina/metabolismo , DNA/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica
4.
Nucleic Acids Res ; 46(4): 1624-1634, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29378012

RESUMO

i-Motif (iM) is a four stranded DNA structure formed by cytosine-rich sequences, which are often present in functionally important parts of the genome such as promoters of genes and telomeres. Using electronic circular dichroism and UV absorption spectroscopies and electrophoretic methods, we examined the effect of four naturally occurring DNA base lesions on the folding and stability of the iM formed by the human telomere DNA sequence (C3TAA)3C3T. The results demonstrate that the TAA loop lesions, the apurinic site and 8-oxoadenine substituting for adenine, and the 5-hydroxymethyluracil substituting for thymine only marginally disturb the formation of iM. The presence of uracil, which is formed by enzymatic or spontaneous deamination of cytosine, shifts iM formation towards substantially more acidic pH values and simultaneously distinctly reduces iM stability. This effect depends on the position of the damage sites in the sequence. The results have enabled us to formulate additional rules for iM formation.


Assuntos
DNA/química , Telômero/química , Adenina/análogos & derivados , Adenina/química , Citosina/química , Dano ao DNA , Humanos , Pentoxil (Uracila)/análogos & derivados , Pentoxil (Uracila)/química , Uracila/química
5.
Nucleic Acids Res ; 45(8): 4294-4305, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28369584

RESUMO

Ionizing radiation produces clustered damage to DNA which is difficult to repair and thus more harmful than single lesions. Clustered lesions have only been investigated in dsDNA models. Introducing the term 'clustered damage to G-quadruplexes' we report here on the structural effects of multiple tetrahydrofuranyl abasic sites replacing loop adenines (A/AP) and tetrad guanines (G/AP) in quadruplexes formed by the human telomere d[AG3(TTAG3)3] (htel-22) and d[TAG3(TTAG3)3TT] (htel-25) in K+ solutions. Single to triple A/APs increased the population of parallel strands in their structures by stabilizing propeller type loops, shifting the antiparallel htel-22 into hybrid or parallel quadruplexes. In htel-25, the G/APs inhibited the formation of parallel strands and these adopted antiparallel topologies. Clustered G/AP and A/APs reduced the thermal stability of the wild-type htel-25. Depending on position, A/APs diminished or intensified the damaging effect of the G/APs. Taken together, clustered lesions can disrupt the topology and stability of the htel quadruplexes and restrict their conformational space. These in vitro results suggest that formation of clustered lesions in the chromosome capping structure can result in the unfolding of existing G-quadruplexes which can lead to telomere shortening.


Assuntos
Adenina/química , DNA/química , Furanos/química , Quadruplex G , Encurtamento do Telômero , Telômero/ultraestrutura , Dicroísmo Circular , DNA/genética , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Oligonucleotídeos/química , Soluções , Telômero/genética
6.
Nucleic Acids Res ; 43(9): 4733-45, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25855805

RESUMO

There are two basic mechanisms that are associated with the maintenance of the telomere length, which endows cancer cells with unlimited proliferative potential. One mechanism, referred to as alternative lengthening of telomeres (ALT), accounts for approximately 10-15% of all human cancers. Tumours engaged in the ALT pathway are characterised by the presence of the single stranded 5'-C-rich telomeric overhang (C-overhang). This recently identified hallmark of ALT cancers distinguishes them from healthy tissues and renders the C-overhang as a clear target for anticancer therapy. We analysed structures of the 5'-C-rich and 3'-G-rich telomeric overhangs from human and Caenorhabditis elegans, the recently established multicellular in vivo model of ALT tumours. We show that the telomeric DNA from C. elegans and humans forms fundamentally different secondary structures. The unique structural characteristics of C. elegans telomeric DNA that are distinct not only from those of humans but also from those of other multicellular eukaryotes allowed us to identify evolutionarily conserved properties of telomeric DNA. Differences in structural organisation of the telomeric DNA between the C. elegans and human impose limitations on the use of the C. elegans as an ALT tumour model.


Assuntos
DNA/química , Evolução Molecular , Telômero/química , Animais , Caenorhabditis elegans/genética , Humanos , Conformação de Ácido Nucleico
7.
Biochem Biophys Res Commun ; 399(2): 203-8, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20643102

RESUMO

This study was performed to evaluate how the loss of a guanine base affects the structure and stability of the three-tetrad G-quadruplex of 5'-dG(3)(TTAG(3))(3), the basic quadruplex-forming unit of the human telomere DNA. None of the 12 possible abasic sites hindered the formation of quadruplexes, but all reduced the thermodynamic stability of the parent quadruplex in both NaCl and KCl. The base loss did not change the Na(+)-stabilized intramolecular antiparallel architecture, based on CD spectra, but held up the conformational change induced in dG(3)(TTAG(3))(3) in physiological concentration of KCl. The reduced stability and the inhibited conformational transitions observed here in vitro for the first time may predict that unrepaired abasic sites in G-quadruplexes could lead to changes in the chromosome's terminal protection in vivo.


Assuntos
Quadruplex G , Guanina/química , Conformação de Ácido Nucleico , Telômero/química , Sequência de Bases , Dicroísmo Circular , Humanos , Potássio/química , Sódio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...