Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RNA ; 18(5): 992-1000, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22393035

RESUMO

In brome mosaic virus, both the replication of the genomic (+)-RNA strands and the transcription of the subgenomic RNA are carried out by the viral replicase. The production of (-)-RNA strands is dependent on the formation of an AUA triloop in the stem-loop C (SLC) hairpin in the 3'-untranslated region of the (+)-RNA strands. Two alternate hypotheses have been put forward for the mechanism of subgenomic RNA transcription. One posits that transcription commences by recognition of at least four key nucleotides in the subgenomic promoter by the replicase. The other posits that subgenomic transcription starts by binding of the replicase to a hairpin formed by the subgenomic promoter that resembles the minus strand promoter hairpin SLC. In this study, we have determined the three-dimensional structure of the subgenomic promoter hairpin using NMR spectroscopy. The data show that the hairpin is stable at 30°C and that it forms a pseudo-triloop structure with a transloop base pair and a nucleotide completely excluded from the helix. The transloop base pair is capped by an AUA triloop that possesses an extremely well packed structure very similar to that of the AUA triloop of SLC, including the formation of a so-called clamped-adenine motif. The similarities of the NMR structures of the hairpins required for genomic RNA and subgenomic RNA synthesis show that the replicase recognizes structure rather than sequence-specific motifs in both promoters.


Assuntos
Bromovirus/genética , Genoma Viral , Sequências Repetidas Invertidas , Regiões Promotoras Genéticas , RNA Viral/química , Pareamento de Bases , Sequência de Bases , Modelos Moleculares , Mutação , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Termodinâmica
2.
Nucleic Acids Res ; 39(5): 1953-65, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21062815

RESUMO

We report the synthesis of two C4'-modified DNA analogues and characterize their structural impact on dsDNA duplexes. The 4'-C-piperazinomethyl modification stabilizes dsDNA by up to 5°C per incorporation. Extension of the modification with a butanoyl-linked pyrene increases the dsDNA stabilization to a maximum of 9°C per incorporation. Using fluorescence, ultraviolet and nuclear magnetic resonance (NMR) spectroscopy, we show that the stabilization is achieved by pyrene intercalation in the dsDNA duplex. The pyrene moiety is not restricted to one intercalation site but rather switches between multiple sites in intermediate exchange on the NMR timescale, resulting in broad lines in NMR spectra. We identified two intercalation sites with NOE data showing that the pyrene prefers to intercalate one base pair away from the modified nucleotide with its linker curled up in the minor groove. Both modifications are tolerated in DNA:RNA hybrids but leave their melting temperatures virtually unaffected. Fluorescence data indicate that the pyrene moiety is residing outside the helix. The available data suggest that the DNA discrimination is due to (i) the positive charge of the piperazino ring having a greater impact in the narrow and deep minor groove of a B-type dsDNA duplex than in the wide and shallow minor groove of an A-type DNA:RNA hybrid and (ii) the B-type dsDNA duplex allowing the pyrene to intercalate and bury its apolar surface.


Assuntos
DNA/química , Piperazinas/química , Timidina/análogos & derivados , Dicroísmo Circular , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Hibridização de Ácido Nucleico , Piperazinas/síntese química , Pirenos/síntese química , Pirenos/química , RNA/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Timidina/síntese química , Timidina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA