Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr D Struct Biol ; 79(Pt 8): 706-720, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37428847

RESUMO

Muramidases (also known as lysozymes) hydrolyse the peptidoglycan component of the bacterial cell wall and are found in many glycoside hydrolase (GH) families. Similar to other glycoside hydrolases, muramidases sometimes have noncatalytic domains that facilitate their interaction with the substrate. Here, the identification, characterization and X-ray structure of a novel fungal GH24 muramidase from Trichophaea saccata is first described, in which an SH3-like cell-wall-binding domain (CWBD) was identified by structure comparison in addition to its catalytic domain. Further, a complex between a triglycine peptide and the CWBD from T. saccata is presented that shows a possible anchor point of the peptidoglycan on the CWBD. A `domain-walking' approach, searching for other sequences with a domain of unknown function appended to the CWBD, was then used to identify a group of fungal muramidases that also contain homologous SH3-like cell-wall-binding modules, the catalytic domains of which define a new GH family. The properties of some representative members of this family are described as well as X-ray structures of the independent catalytic and SH3-like domains of the Kionochaeta sp., Thermothielavioides terrestris and Penicillium virgatum enzymes. This work confirms the power of the module-walking approach, extends the library of known GH families and adds a new noncatalytic module to the muramidase arsenal.


Assuntos
Muramidase , Peptidoglicano , Muramidase/química , Sequência de Aminoácidos , Modelos Moleculares , Glicosídeo Hidrolases/química , Parede Celular
2.
PLoS One ; 16(3): e0248190, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33711051

RESUMO

Muramidases/lysozymes hydrolyse the peptidoglycan component of the bacterial cell wall. They are found in many of the glycoside hydrolase (GH) families. Family GH25 contains muramidases/lysozymes, known as CH type lysozymes, as they were initially discovered in the Chalaropsis species of fungus. The characterized enzymes from GH25 exhibit both ß-1,4-N-acetyl- and ß-1,4-N,6-O-diacetylmuramidase activities, cleaving the ß-1,4-glycosidic bond between N-acetylmuramic acid (NAM) and N-acetylglucosamine (NAG) moieties in the carbohydrate backbone of bacterial peptidoglycan. Here, a set of fungal GH25 muramidases were identified from a sequence search, cloned and expressed and screened for their ability to digest bacterial peptidoglycan, to be used in a commercial application in chicken feed. The screen identified the enzyme from Acremonium alcalophilum JCM 736 as a suitable candidate for this purpose and its relevant biochemical and biophysical and properties are described. We report the crystal structure of the A. alcalophilum enzyme at atomic, 0.78 Å resolution, together with that of its homologue from Trichobolus zukalii at 1.4 Å, and compare these with the structures of homologues. GH25 enzymes offer a new solution in animal feed applications such as for processing bacterial debris in the animal gut.


Assuntos
Fungos/metabolismo , Muramidase/metabolismo , Conformação Proteica , Animais , Parede Celular/metabolismo , Cristalografia por Raios X , Modelos Moleculares
3.
Int J Mol Sci ; 20(22)2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31698762

RESUMO

Muramidases/lysozymes are important bio-molecules, which cleave the glycan backbone in the peptidoglycan polymer found in bacterial cell walls. The glycoside hydrolase (GH) family 22 C-type lysozyme, from the folivorous bird Opisthocomus hoazin (stinkbird), was expressed in Aspergillus oryzae, and a set of variants was produced. All variants were enzymatically active, including those designed to probe key differences between the Hoatzin enzyme and Hen Egg White lysozyme. Four variants showed improved thermostability at pH 4.7, compared to the wild type. The X-ray structure of the enzyme was determined in the apo form and in complex with chitin oligomers. Bioinformatic analysis of avian GH22 amino acid sequences showed that they separate out into three distinct subgroups (chicken-like birds, sea birds and other birds). The Hoatzin is found in the "other birds" group and we propose that this represents a new cluster of avian upper-gut enzymes.


Assuntos
Aves/metabolismo , Muramidase/química , Trato Gastrointestinal Superior/enzimologia , Sequência de Aminoácidos , Animais , Aspergillus/metabolismo , Parede Celular/metabolismo , Concentração de Íons de Hidrogênio , Modelos Moleculares , Filogenia , Polissacarídeos/química , Eletricidade Estática
4.
Acta Crystallogr D Struct Biol ; 74(Pt 5): 463-470, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717717

RESUMO

Glucoamylases are one of the most important classes of enzymes in the industrial degradation of starch biomass. They consist of a catalytic domain and a carbohydrate-binding domain (CBM), with the latter being important for the interaction with the polymeric substrate. Whereas the catalytic mechanisms and structures of the individual domains are well known, the spatial arrangement of the domains with respect to each other and its influence on activity are not fully understood. Here, the structures of three industrially used fungal glucoamylases, two of which are full length, have been crystallized and determined. It is shown for the first time that the relative orientation between the CBM and the catalytic domain is flexible, as they can adopt different orientations independently of ligand binding, suggesting a role as an anchor to increase the contact time and the relative concentration of substrate near the active site. The flexibility in the orientations of the two domains presented a considerable challenge for the crystallization of the enzymes.


Assuntos
Fungos/enzimologia , Glucana 1,4-alfa-Glucosidase/química , Sítios de Ligação , Metabolismo dos Carboidratos , Domínio Catalítico , Cristalização , Cristalografia/métodos , Proteínas Fúngicas/química , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Amido/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-23989143

RESUMO

Amylosucrases (ASes) catalyze the formation of an α-1,4-glucosidic linkage by transferring a glucosyl unit from sucrose onto an acceptor α-1,4-glucan. To date, several ligand-bound crystal structures of wild-type and mutant ASes from Neisseria polysaccharea and Deinococcus geothermalis have been solved. These structures all display a very similar overall conformation with a deep pocket leading to the site for transglucosylation, subsite -1. This has led to speculation on how sucrose enters the active site during glucan elongation. In contrast to previous studies, the AS structure from D. radiodurans presented here has a completely empty -1 subsite. This structure is strikingly different from other AS structures, as an active-site-lining loop comprising residues Leu214-Asn225 is found in a previously unobserved conformation. In addition, a large loop harbouring the conserved active-site residues Asp133 and Tyr136 is disordered. The result of the changed loop conformations is that the active-site topology is radically changed, leaving subsite -1 exposed and partially dismantled. This structure provides novel insights into the dynamics of ASes and comprises the first structural support for an elongation mechanism that involves considerable conformational changes to modulate accessibility to the sucrose-binding site and thereby allows successive cycles of glucosyl-moiety transfer to a growing glucan chain.


Assuntos
Proteínas de Bactérias/química , Deinococcus/química , Glucanos/química , Glucosiltransferases/química , Sacarose/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Deinococcus/enzimologia , Deinococcus/genética , Escherichia coli/genética , Glucanos/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Sacarose/metabolismo
6.
PLoS One ; 8(7): e70013, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936134

RESUMO

The impact of disulfide bonds on protein stability goes beyond simple equilibrium thermodynamics effects associated with the conformational entropy of the unfolded state. Indeed, disulfide crosslinks may play a role in the prevention of dysfunctional association and strongly affect the rates of irreversible enzyme inactivation, highly relevant in biotechnological applications. While these kinetic-stability effects remain poorly understood, by analogy with proposed mechanisms for processes of protein aggregation and fibrillogenesis, we propose that they may be determined by the properties of sparsely-populated, partially-unfolded intermediates. Here we report the successful design, on the basis of high temperature molecular-dynamics simulations, of six thermodynamically and kinetically stabilized variants of phytase from Citrobacter braakii (a biotechnologically important enzyme) with one, two or three engineered disulfides. Activity measurements and 3D crystal structure determination demonstrate that the engineered crosslinks do not cause dramatic alterations in the native structure. The inactivation kinetics for all the variants displays a strongly non-Arrhenius temperature dependence, with the time-scale for the irreversible denaturation process reaching a minimum at a given temperature within the range of the denaturation transition. We show this striking feature to be a signature of a key role played by a partially unfolded, intermediate state/ensemble. Energetic and mutational analyses confirm that the intermediate is highly unfolded (akin to a proposed critical intermediate in the misfolding of the prion protein), a result that explains the observed kinetic stabilization. Our results provide a rationale for the kinetic-stability consequences of disulfide-crosslink engineering and an experimental methodology to arrive at energetic/structural descriptions of the sparsely populated and elusive intermediates that play key roles in irreversible protein denaturation.


Assuntos
6-Fitase/química , Dissulfetos , Termodinâmica , 6-Fitase/genética , 6-Fitase/metabolismo , Citrobacter/enzimologia , Ativação Enzimática , Estabilidade Enzimática , Cinética , Modelos Moleculares , Mutação , Conformação Proteica , Desnaturação Proteica , Engenharia de Proteínas , Dobramento de Proteína , Temperatura
7.
PLoS One ; 8(5): e65062, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23741456

RESUMO

Phytases hydrolyse phytate (myo-inositol hexakisphosphate), the principal form of phosphate stored in plant seeds to produce phosphate and lower phosphorylated myo-inositols. They are used extensively in the feed industry, and have been characterised biochemically and structurally with a number of structures in the PDB. They are divided into four distinct families: histidine acid phosphatases (HAP), ß-propeller phytases, cysteine phosphatases and purple acid phosphatases and also split into three enzyme classes, the 3-, 5- and 6-phytases, depending on the position of the first phosphate in the inositol ring to be removed. We report identification, cloning, purification and 3D structures of 6-phytases from two bacteria, Hafnia alvei and Yersinia kristensenii, together with their pH optima, thermal stability, and degradation profiles for phytate. An important result is the structure of the H. alvei enzyme in complex with the substrate analogue myo-inositol hexakissulphate. In contrast to the only previous structure of a ligand-bound 6-phytase, where the 3-phosphate was unexpectedly in the catalytic site, in the H. alvei complex the expected scissile 6-phosphate (sulphate in the inhibitor) is placed in the catalytic site.


Assuntos
6-Fitase/metabolismo , Hafnia alvei/metabolismo , Ácido Fítico/metabolismo , 6-Fitase/química , 6-Fitase/genética , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Hafnia alvei/classificação , Hafnia alvei/genética , Hidrólise , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência , Especificidade por Substrato
8.
J Sci Food Agric ; 91(8): 1398-405, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21387323

RESUMO

BACKGROUND: Phytases increase utilization of phytate phosphorus in feed. Since wheat is rich in endogenous phytase activity it was examined whether wheat phytases could improve phytate degradation compared to microbial phytases. Moreover, it was investigated whether enzymatic degradation of phytate is influenced by the matrix surrounding it. Phytate degradation was defined as the decrease in the sum of InsP6 + InsP5. RESULTS: Endogenous wheat phytase effectively degraded wheat Ins6 + InsP5 at pH 4 and pH 5, while this was not true for a recombinant wheat phytase or phytase extracted from wheat bran. Only microbial phytases were able to degrade InsP6 + InsP5 in the entire pH range from 3 to 5, which is relevant for feed applications. A microbial phytase was efficient towards InsP6 + InsP5 in different phytate samples, whereas the ability to degrade InsP6 + InsP5 in the different phytate samples ranged from 12% to 70% for the recombinant wheat phytase. CONCLUSION: Wheat phytase appeared to have an interesting potential. However, the wheat phytases studied could not improve phytate degradation compared to microbial phytases. The ability to degrade phytate in different phytate samples varied greatly for some phytases, indicating that phytase efficacy may be affected by the phytate matrix.


Assuntos
6-Fitase/metabolismo , Fósforo na Dieta/metabolismo , Ácido Fítico/metabolismo , Proteínas de Plantas/metabolismo , Triticum/metabolismo , 6-Fitase/farmacologia , Ração Animal , Bacillus/enzimologia , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/metabolismo , Sementes , Triticum/enzimologia
9.
Acta Crystallogr D Biol Crystallogr ; 65(Pt 12): 1309-14, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19966417

RESUMO

Glycoside hydrolase family 13 (GH-13) mainly contains starch-degrading or starch-modifying enzymes. Sucrose hydrolases utilize sucrose instead of amylose as the primary glucosyl donor. Here, the catalytic properties and X-ray structure of sucrose hydrolase from Xanthomonas campestris pv. campestris are reported. Sucrose hydrolysis catalyzed by the enzyme follows Michaelis-Menten kinetics, with a K(m) of 60.7 mM and a k(cat) of 21.7 s(-1). The structure of the enzyme was solved at a resolution of 1.9 A in the resting state with an empty active site. This represents the first apo structure from subfamily 4 of GH-13. Comparisons with structures of the highly similar sucrose hydrolase from X. axonopodis pv. glycines most notably showed that residues Arg516 and Asp138, which form a salt bridge in the X. axonopodis sucrose complex and define part of the subsite -1 glucosyl-binding determinants, are not engaged in salt-bridge formation in the resting X. campestris enzyme. In the absence of the salt bridge an opening is created which gives access to subsite -1 from the ;nonreducing' end. Binding of the glucosyl moiety in subsite -1 is therefore likely to induce changes in the conformation of the active-site cleft of the X. campestris enzyme. These changes lead to salt-bridge formation that shortens the groove. Additionally, this finding has implications for understanding the molecular mechanism of the closely related subfamily 4 glucosyl transferase amylosucrase, as it indicates that sucrose could enter the active site from the ;nonreducing' end during the glucan-elongation cycle.


Assuntos
Glicosídeo Hidrolases/química , Xanthomonas campestris/enzimologia , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Glicosídeo Hidrolases/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , Sacarose/metabolismo
10.
Biochemistry ; 47(28): 7441-51, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18563919

RESUMO

The crystal structure of the family GH-51 alpha- l-arabinofuranosidase from Thermobacillus xylanilyticus has been solved as a seleno-methionyl derivative. In addition, the structure of an inactive mutant Glu176Gln is presented in complex with a branched pentasaccharide, a fragment of its natural substrate xylan. The overall structure shows the two characteristic GH-51 domains: a catalytic domain that is folded into a (beta/alpha) 8-barrel and a C-terminal domain that displays jelly roll architecture. The pentasaccharide is bound in a groove on the surface of the enzyme, with the mono arabinosyl branch entering a tight pocket harboring the catalytic dyad. Detailed analyses of both structures and comparisons with the two previously determined structures from Geobacillus stearothermophilus and Clostridium thermocellum reveal important details unique to the Thermobacillus xylanilyticus enzyme. In the absence of substrate, the enzyme adopts an open conformation. In the substrate-bound form, the long loop connecting beta-strand 2 to alpha-helix 2 closes the active site and interacts with the substrate through residues His98 and Trp99. The results of kinetic and fluorescence titration studies using mutants underline the importance of this loop, and support the notion of an interaction between Trp99 and the bound substrate. We suggest that the changes in loop conformation are an integral part of the T. xylanilyticus alpha- l-arabinofuranosidase reaction mechanism, and ensure efficient binding and release of substrate.


Assuntos
Bacillaceae/enzimologia , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Oligossacarídeos/química , Xilanos/metabolismo , Arabinose/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Configuração de Carboidratos , Cristalografia por Raios X , Glicosídeo Hidrolases/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Termodinâmica
11.
Proteins ; 66(1): 118-26, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17044042

RESUMO

Amylosucrase from Neisseria polysaccharea (AS) is a transglucosidase from the glycoside-hydrolase family 13 that catalyzes the synthesis of an amylose-like polymer from sucrose, without any primer. Its affinity towards glycogen is particularly noteworthy since glycogen is the best D-glucosyl unit acceptor and the most efficient activator (98-fold k(cat) increase) known for this enzyme. Glycogen-enzyme interactions were modeled starting from the crystallographic AS: maltoheptaose complex, where two key oligosaccharide binding sites, OB1 and OB2, were identified. Two maltoheptaose molecules were connected by an alpha-1,6 branch by molecular modeling to mimic a glycogen branching. Among the various docking positions obtained, four models were chosen based on geometry and energy criteria. Robotics calculations enabled us to describe a back and forth motion of a hairpin loop of the AS specific B'-domain, a movement that assists the elongation of glycogen branches. Modeling data combined with site-directed mutagenesis experiments revealed that the OB2 surface site provides an anchoring platform at the enzyme surface to capture the polymer and direct the branches towards the OB1 acceptor site for elongation. On the basis of the data obtained, a semiprocessive glycogen elongation mechanism can be proposed.


Assuntos
Glucosiltransferases/química , Glicogênio/química , Arginina/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Glucanos/metabolismo , Glucosiltransferases/metabolismo , Glicogênio/metabolismo , Modelos Biológicos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Neisseria/química , Neisseria/enzimologia , Fenilalanina/metabolismo , Conformação Proteica , Sacarose/metabolismo
12.
J Biol Chem ; 281(46): 35576-84, 2006 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-16990265

RESUMO

The reaction mechanism of sucrose phosphorylase from Bifidobacterium adolescentis (BiSP) was studied by site-directed mutagenesis and x-ray crystallography. An inactive mutant of BiSP (E232Q) was co-crystallized with sucrose. The structure revealed a substrate-binding mode comparable with that seen in other related sucrose-acting enzymes. Wild-type BiSP was also crystallized in the presence of sucrose. In the dimeric structure, a covalent glucosyl intermediate was formed in one molecule of the BiSP dimer, and after hydrolysis of the glucosyl intermediate, a beta-D-glucose product complex was formed in the other molecule. Although the overall structure of the BiSP-glucosyl intermediate complex is similar to that of the BiSP(E232Q)-sucrose complex, the glucose complex discloses major differences in loop conformations. Two loops (residues 336-344 and 132-137) in the proximity of the active site move up to 16 and 4 A, respectively. On the basis of these findings, we have suggested a reaction cycle that takes into account the large movements in the active-site entrance loops.


Assuntos
Bifidobacterium/enzimologia , Glucosiltransferases/metabolismo , Sacarose/metabolismo , Sítios de Ligação , Configuração de Carboidratos , Modelos Moleculares , Conformação Proteica
13.
Acta Crystallogr D Biol Crystallogr ; 62(Pt 6): 595-604, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16699186

RESUMO

Wasp venom from Vespula vulgaris contains three major allergens: Ves v 1, Ves v 2 and Ves v 5. Here, the cloning, expression, biochemical characterization and crystal structure determination of the hyaluronidase Ves v 2 from family 56 of the glycoside hydrolases are reported. The allergen was expressed in Escherichia coli as an insoluble protein and refolded and purified to obtain full enzymatic activity. Three N-glycosylation sites at Asn79, Asn99 and Asn127 were identified in Ves v 2 from a natural source by enzymatic digestions combined with MALDI-TOF mass spectrometry. The crystal structure of recombinant Ves v 2 was determined at 2.0 A resolution and reveals a central (beta/alpha)(7) core that is further stabilized by two disulfide bonds (Cys19-Cys308 and Cys185-Cys197). Based on sequence alignments and structural comparison with the honeybee allergen Api m 2, it is proposed that a conserved cavity near the active site is involved in binding of the substrate. Surface epitopes and putative glycosylation sites have been compared with those of two other major group 2 allergens from Apis mellifera (honeybee) and Dolichovespula maculata (white-faced hornet). The analysis suggests that the harboured allergic IgE-mediated cross-reactivity between Ves v 2 and the allergen from D. maculata is much higher than that between Ves v 2 and the allergen from A. mellifera.


Assuntos
Hialuronoglucosaminidase/química , Modelos Moleculares , Venenos de Vespas/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Glicosilação , Hialuronoglucosaminidase/genética , Hialuronoglucosaminidase/isolamento & purificação , Dados de Sequência Molecular , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Análise de Sequência de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Venenos de Vespas/genética , Venenos de Vespas/isolamento & purificação
14.
FEBS J ; 273(4): 673-81, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16441655

RESUMO

Amylosucrase is a transglycosidase which belongs to family 13 of the glycoside hydrolases and transglycosidases, and catalyses the formation of amylose from sucrose. Its potential use as an industrial tool for the synthesis or modification of polysaccharides is hampered by its low catalytic efficiency on sucrose alone, its low stability and the catalysis of side reactions resulting in sucrose isomer formation. Therefore, combinatorial engineering of the enzyme through random mutagenesis, gene shuffling and selective screening (directed evolution) was applied, in order to generate more efficient variants of the enzyme. This resulted in isolation of the most active amylosucrase (Asn387Asp) characterized to date, with a 60% increase in activity and a highly efficient polymerase (Glu227Gly) that produces a longer polymer than the wild-type enzyme. Furthermore, judged from the screening results, several variants are expected to be improved concerning activity and/or thermostability. Most of the amino acid substitutions observed in the totality of these improved variants are clustered around specific regions. The secondary sucrose-binding site and beta strand 7, connected to the important Asp393 residue, are found to be important for amylosucrase activity, whereas a specific loop in the B-domain is involved in amylosucrase specificity and stability.


Assuntos
Evolução Molecular , Variação Genética , Glucosiltransferases/metabolismo , Conformação Proteica , Estabilidade Enzimática , Escherichia coli/enzimologia , Glucosiltransferases/química , Glucosiltransferases/genética , Modelos Moleculares , Mutação , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato , Temperatura
15.
FEBS Lett ; 579(5): 1154-60, 2005 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-15710405

RESUMO

The X-ray structure of the ligand-binding core of the kainate receptor GluR5 (GluR5-S1S2) in complex with (S)-glutamate was determined to 1.95 A resolution. The overall GluR5-S1S2 structure comprises two domains and is similar to the related AMPA receptor GluR2-S1S2J. (S)-glutamate binds as in GluR2-S1S2J. Distinct features are observed for Ser741, which stabilizes a highly coordinated network of water molecules and forms an interdomain bridge. The GluR5 complex exhibits a high degree of domain closure (26 degrees) relative to apo GluR2-S1S2J. In addition, GluR5-S1S2 forms a novel dimer interface with a different arrangement of the two protomers compared to GluR2-S1S2J.


Assuntos
Glutamatos/metabolismo , Receptores de Ácido Caínico/química , Receptores de Ácido Caínico/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Receptores de AMPA/química , Receptores de AMPA/metabolismo , Alinhamento de Sequência
16.
FEBS Lett ; 579(5): 1208-12, 2005 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-15710415

RESUMO

The X-ray structure of the group 2 major allergen from Dermatophagoides farinae (Der f 2) was determined to 1.83 A resolution. The overall Der f 2 structure comprises a single domain of immunoglobulin fold with two anti-parallel beta-sheets. A large hydrophobic cavity is formed in the interior of Der f 2. Structural comparisons to distantly related proteins suggest a role in lipid binding. Immunoglobulin E (IgE) cross-reactivity between group 2 house dust mite major allergens can be explained by conserved surface areas representing IgE binding epitopes.


Assuntos
Alérgenos/química , Alérgenos/imunologia , Antígenos de Dermatophagoides/química , Antígenos de Dermatophagoides/imunologia , Reações Cruzadas/imunologia , Imunoglobulina E/imunologia , Pyroglyphidae/química , Animais , Proteínas de Artrópodes , Cristalografia por Raios X , Epitopos/imunologia , Interações Hidrofóbicas e Hidrofílicas , Metabolismo dos Lipídeos , Modelos Moleculares , Estrutura Terciária de Proteína , Pyroglyphidae/imunologia
17.
Protein Pept Lett ; 12(7): 687-93, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16522185

RESUMO

The conformational stability of calreticulin was investigated. Apparent unfolding temperatures (Tm) increased from 31 degrees C at pH 5 to 51 degrees C at pH 9, but electrophoretic analysis revealed that calreticulin oligomerized instead of unfolding. Structural analyses showed that the single C-terminal alpha-helix was of major importance to the conformational stability of calreticulin.


Assuntos
Calreticulina/química , Calreticulina/metabolismo , Cálcio/química , Cálcio/farmacologia , Varredura Diferencial de Calorimetria , Cátions Bivalentes/química , Dicroísmo Circular , Humanos , Concentração de Íons de Hidrogênio , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Temperatura
18.
Biochemistry ; 43(11): 3104-10, 2004 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-15023061

RESUMO

The alpha-retaining amylosucrase from the glycoside hydrolase family 13 performs a transfer reaction of a glucosyl moiety from sucrose to an acceptor molecule. Amylosucrase has previously been shown to be able to use alpha-D-glucopyranosyl fluoride as a substrate, which suggested that it could also be used for trapping the reaction intermediate for crystallographic studies. In this paper, the crystal structure of the acid/base catalyst mutant, E328Q, with a covalently bound glucopyranosyl moiety is presented. Sucrose cocrystallized crystals were soaked with alpha-D-glucopyranosyl fluoride, which resulted in the trapping of a covalent intermediate in the active site of the enzyme. The structure is refined to a resolution of 2.2 A and showed that binding of the covalent intermediate resulted in a backbone movement of 1 A around the location of the nucleophile, Asp286. This structure reveals the first covalent intermediate of an alpha-retaining glycoside hydrolase where the glucosyl moiety is identical to the expected biologically relevant entity. Comparison to other enzymes with anticipated glucosylic covalent intermediates suggests that this structure is a representative model for such intermediates. Analysis of the active site shows how oligosaccharide binding disrupts the putative nucleophilic water binding site found in the hydrolases of the GH family 13. This reveals important parts of the structural background for the shift in function from hydrolase to transglycosidase seen in amylosucrase.


Assuntos
Proteínas de Bactérias/química , Glucosiltransferases/química , Neisseria/enzimologia , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Sequência Conservada , Cristalografia por Raios X , Glucosiltransferases/genética , Ácido Glutâmico/genética , Glutamina/genética , Especificidade por Substrato/genética , Água/química
19.
Biochemistry ; 43(5): 1156-62, 2004 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-14756551

RESUMO

Around 80 enzymes are implicated in the generic starch and sucrose pathways. One of these enzymes is sucrose phosphorylase, which reversibly catalyzes the conversion of sucrose and orthophosphate to d-Fructose and alpha-d-glucose 1-phosphate. Here, we present the crystal structure of sucrose phosphorylase from Bifidobacterium adolescentis (BiSP) refined at 1.77 A resolution. It represents the first 3D structure of a sucrose phosphorylase and is the first structure of a phosphate-dependent enzyme from the glycoside hydrolase family 13. The structure of BiSP is composed of the four domains A, B, B', and C. Domain A comprises the (beta/alpha)(8)-barrel common to family 13. The catalytic active-site residues (Asp192 and Glu232) are located at the tips of beta-sheets 4 and 5 in the (beta/alpha)(8)-barrel, as required for family 13 members. The topology of the B' domain disfavors oligosaccharide binding and reduces the size of the substrate access channel compared to other family 13 members, underlining the role of this domain in modulating the function of these enzymes. It is remarkable that the fold of the C domain is not observed in any other known hydrolases of family 13. BiSP was found as a homodimer in the crystal, and a dimer contact surface area of 960 A(2) per monomer was calculated. The majority of the interactions are confined to the two B domains, but interactions between the loop 8 regions of the two barrels are also observed. This results in a large cavity in the dimer, including the entrance to the two active sites.


Assuntos
Bifidobacterium/enzimologia , Glucosiltransferases/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Dimerização , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
20.
J Biol Chem ; 279(1): 726-34, 2004 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-14570882

RESUMO

Amylosucrase from Neisseria polysaccharea is a remarkable transglucosidase from family 13 of the glycoside-hydrolases that synthesizes an insoluble amylose-like polymer from sucrose in the absence of any primer. Amylosucrase shares strong structural similarities with alpha-amylases. Exactly how this enzyme catalyzes the formation of alpha-1,4-glucan and which structural features are involved in this unique functionality existing in family 13 are important questions still not fully answered. Here, we provide evidence that amylosucrase initializes polymer formation by releasing, through sucrose hydrolysis, a glucose molecule that is subsequently used as the first acceptor molecule. Maltooligosaccharides of increasing size were produced and successively elongated at their nonreducing ends until they reached a critical size and concentration, causing precipitation. The ability of amylosucrase to bind and to elongate maltooligosaccharides is notably due to the presence of key residues at the OB1 acceptor binding site that contribute strongly to the guidance (Arg415, subsite +4) and the correct positioning (Asp394 and Arg446, subsite +1) of acceptor molecules. On the other hand, Arg226 (subsites +2/+3) limits the binding of maltooligosaccharides, resulting in the accumulation of small products (G to G3) in the medium. A remarkable mutant (R226A), activated by the products it forms, was generated. It yields twice as much insoluble glucan as the wild-type enzyme and leads to the production of lower quantities of by-products.


Assuntos
Glucosiltransferases/química , Glucosiltransferases/metabolismo , Neisseria/enzimologia , Oligossacarídeos/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Sequência Conservada , Glucosiltransferases/isolamento & purificação , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sacarose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA