Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 85(9): 095118, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25273783

RESUMO

As novel fibers with enhanced mechanical properties continue to be synthesized and developed, the ability to easily and accurately characterize these materials becomes increasingly important. Here we present a design for an inexpensive tabletop instrument to measure shear modulus (G) and other longitudinal shear properties of a micrometer-sized monofilament fiber sample, such as nonlinearities and hysteresis. This automated system applies twist to the sample and measures the resulting torque using a sensitive optical detector that tracks a torsion reference. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers, for which G is well known. Two industrially important fibers, IM7 carbon fiber and Kevlar(®) 119, were also characterized with this system and were found to have G = 16.5 ± 2.1 and 2.42 ± 0.32 GPa, respectively.

2.
Sci Rep ; 4: 5542, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24986377

RESUMO

Despite their wide spread applications, the mechanical behavior of helically coiled structures has evaded an accurate understanding at any length scale (nano to macro) mainly due to their geometrical complexity. The advent of helically coiled micro/nanoscale structures in nano-robotics, nano-inductors, and impact protection coatings has necessitated the development of new methodologies for determining their shear and tensile properties. Accordingly, we developed a synergistic protocol which (i) integrates analytical, numerical (i.e., finite element using COMSOL) and experimental (harmonic detection of resonance; HDR) methods to obtain an empirically validated closed form expression for the shear modulus and resonance frequency of a singly clamped helically coiled carbon nanowire (HCNW), and (ii) circumvents the need for solving 12th order differential equations. From the experimental standpoint, a visual detection of resonances (using in situ scanning electron microscopy) combined with HDR revealed intriguing non-planar resonance modes at much lower driving forces relative to those needed for linear carbon nanotube cantilevers. Interestingly, despite the presence of mechanical and geometrical nonlinearities in the HCNW resonance behavior the ratio of the first two transverse modes f2/f1 was found to be similar to the ratio predicted by the Euler-Bernoulli theorem for linear cantilevers.

3.
Nano Lett ; 5(12): 2389-93, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16351183

RESUMO

We report a new method of measuring the amplitude and phase of oscillations of individual multiwall carbon nanotubes (MWNTs). As in many other experiments, we excite the oscillations electrostatically, but we show that we can detect the amplitude and phase of the resulting oscillation electrically. As an example, we present measurements of the fundamental and first two overtones of the diving board resonance of a MWNT at 0.339, 2.42, and 5.31 MHz in ambient conditions. The corresponding quality factors were 67, 36, and 25.


Assuntos
Algoritmos , Eletroquímica/métodos , Teste de Materiais/métodos , Nanotecnologia/métodos , Nanotubos de Carbono/análise , Nanotubos de Carbono/química , Estimulação Física/métodos , Elasticidade , Oscilometria/métodos , Eletricidade Estática , Estresse Mecânico , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...