Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(18): 8131-8141, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38639743

RESUMO

Mixed metal oxyhalides are an exciting class of photocatalysts, capable of the sustainable generation of fuels and remediation of pollutants with solar energy. Bismuth oxyhalides of the types Bi4MO8X (M = Nb and Ta; X = Cl and Br) and Bi2AO4X (A = most lanthanides; X = Cl, Br, and I) have an electronic structure that imparts photostability, as their valence band maxima (VBM) are composed of O 2p orbitals rather than X np orbitals that typify many other bismuth oxyhalides. Here, flux-based synthesis of intergrowth Bi4NbO8Cl-Bi2GdO4Cl is reported, testing the hypothesis that both intergrowth stoichiometry and M identity serve as levers toward tunable optoelectronic properties. X-ray scattering and atomically resolved electron microscopy verify intergrowth formation. Facile manipulation of the Bi4NbO8Cl-to-Bi2GdO4Cl ratio is achieved with the specific ratio influencing both the crystal and electronic structures of the intergrowths. This compositional flexibility and crystal structure engineering can be leveraged for photocatalytic applications, with comparisons to the previously reported Bi4TaO8Cl-Bi2GdO4Cl intergrowth revealing how subtle structural and compositional features can impact photocatalytic materials.

2.
Nanoscale ; 16(16): 8002-8012, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38535987

RESUMO

Metal nanocrystals (NCs) produced by colloidal synthesis have a variety of structural features, such as different planes, edges, and defects. Even from the best colloidal syntheses, these characteristics are distributed differently in each NC. This inherent heterogeneity can play a significant role in the properties displayed by NCs. This manuscript reports the use of electrochemistry to synthesize Au NCs in a system evaluated to track individual NC growth trajectories as a first step toward rapid identification of NCs with different structural features. Au nanocubes were prepared colloidally and deposited onto a glassy carbon electrode using either electrospray or an airbrush, resulting in well-spaced Au nanocubes. The Au nanocubes then served as seeds as gold salt was reduced to deposit metal at constant potential. Deposition at constant potential facilitates overgrowth on the Au nanocubes to achieve new NC shapes. The effects of applied potential, deposition time, precursor concentration, and capping agents on NC shape evolution were studied. The outcomes are correlated to results from traditional colloidal syntheses, providing a bridge between the two synthetic strategies. Moreover, scanning electron microscopy was used to image the same NCs before and after deposition, linking individual seed features to differences in deposition. This ability is anticipated to enable tracking of individual growth trajectories of NCs to elucidate sources of heterogeneity in NC syntheses.

3.
Inorg Chem ; 62(24): 9640-9648, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37265371

RESUMO

Bismuth oxyhalides are a promising class of photocatalysts for harvesting solar energy. These materials are often synthesized in aqueous media with poor synthetic control resulting from the extremely fast nucleation and growth rates of the particles. These fast rates are caused by the rapid precipitation of bismuth salts with free halide ions. We have developed water-soluble precursors combining bismuth with either chlorine or bromine atoms in the same metal-organic complex. With the application of heat, halide ions are released, which then precipitate with bismuth ions as BiOX (X = Cl, Br). By controlling the halide ion formation rate, the nucleation and growth rates of BiOX materials can be tuned to provide synthetic control. The diverse potential of these precursors is demonstrated by synthesizing BiOX in three ways: aqueous colloidal synthesis, solid-state decomposition, and fabrication of films of BiOX via spray pyrolysis of the aqueous precursor solutions. These broadly applicable single-source precursors will enhance the ability to synthesize future BiOX materials with controlled morphologies.

4.
ACS Phys Chem Au ; 3(3): 252-262, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37249938

RESUMO

Simulating the plasmonic properties of colloidally derived metal nanoparticles with accuracy to their experimentally observed measurements is challenging due to the many structural and compositional parameters that influence their scattering and absorption properties. Correlation between single nanoparticle scattering measurements and simulated spectra emphasize these strong structural and compositional relationships, providing insight into the design of plasmonic nanoparticles. This Perspective builds from this history to highlight how the structural features of models used in simulation methods such as those based on the Finite-Difference Time-Domain (FDTD) method and Discrete Dipole Approximation (DDA) are of critical consideration for correlation with experiment and ultimately prediction of new nanoparticle properties. High-level characterizations such as electron tomography are discussed as ways to advance the accuracy of models used in such simulations, allowing the plasmonic properties of structurally complex nanoparticles to be better understood. However, we also note that the field is far from bringing experiment and simulation into agreement for plasmonic nanoparticles with complex compositions, reflecting analytical challenges that inhibit accurate model generation. Potential directions for addressing these challenges are also presented.

5.
Nanoscale ; 15(8): 3749-3756, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36645383

RESUMO

Galvanic replacement (GR) of monometallic nanoparticles (NPs) provides a versatile route to interesting bimetallic nanostructures, with examples such as nanoboxes, nanocages, nanoshells, nanorings, and heterodimers reported. The replacement of bimetallic templates by a more noble metal can generate trimetallic nanostructures with different architectures, where the specific structure has been shown to depend on the relative reduction potentials of the participating metals and lattice mismatch between the depositing and template metal phases. Now, the role of reaction stoichiometry is shown to direct the overall architecture of multimetallic nanostructures produced by GR with bimetallic templates. Specifically, the number of initial metal islands deposited on a NP template depends on the reaction stoichiometry. This outcome was established by studying the GR process between intermetallic PdCu (i-PdCu) NPs and either AuCl2- (Au1+) or AuCl4- (Au3+), producing i-PdCu-Au heterostructures. Significantly, multiple Au domains form in the case of GR with AuCl2- while only single Au domains form in the case of AuCl4-. These different NP architectures and their connection to reaction stoichiometry are consistent with Stranski-Krastanov (SK) growth, providing general guidelines on how the conditions of GR processes can be used to achieve multimetallic nanostructures with different defined architectures.

6.
Nanoscale ; 14(45): 16918-16928, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36345669

RESUMO

Plasmonic nanoparticles (NPs) have garnered excitement over the past several decades stemming from their unique optoelectronic properties, leading to their use in various sensing applications and theranostics. Symmetry dictates the properties of many nanomaterials, and nanostructures with low, but still defined symmetries, often display markedly different properties compared to their higher symmetry counterparts. While numerous methods are available to manipulate symmetry, surface protecting groups such as polymers are finding use due to their ability to achieve regioselective modification of NP seeds, which can be removed after overgrowth as shown here. Specifically, poly(styrene-b-polyacrylic acid) (PSPAA) is used to asymmetrically passivate cubic Au seeds through competition with hexadecyltrimethylammonium bromide (CTAB) ligands. The asymmetric passivation via collapsed PSPAA causes only select vertices and faces of the Au cubes to be available for deposition of new material (i.e., Au, Au-Ag alloy, and Au-Pd alloy) during seeded overgrowth. At low metal precursor concentrations, deposition follows observations from unpassivated seeds but with new material growing from only the exposed seed portions. At high metal precursor concentrations, nanobowl-like structures form from interaction between the depositing phase and the passivating PSPAA. Through experiment and simulation, the optoelectronic properties of these nanobowls were probed, finding that the interiors and exteriors of the nanobowls can be functionalized selectively as revealed by surface enhanced Raman spectroscopy (SERS).

7.
ACS Nano ; 16(11): 18873-18885, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36255141

RESUMO

Colloidally prepared core@shell nanoparticles (NPs) were converted to monodisperse high entropy alloy (HEA) NPs by annealing, including quinary, senary, and septenary phases comprised of PdCuPtNi with Co, Ir, Rh, Fe, and/or Ru. Intraparticle heterogeneity, i.e., subdomains within individual NPs with different metal distributions, was observed for NPs containing Ir and Ru, with the phase stabilities of the HEAs studied by atomistic simulations. The quinary HEA NPs were found to be durable catalysts for the oxygen reduction reaction, with all but the PdCuPtNiIr NPs presenting better activities than commercial Pt. Density functional theory (DFT) calculations for PdCuPtNiCo and PdCuPtNiIr surfaces (the two extremes in performance) found agreement with experiment by weighting the adsorption energy contributions by the probabilities of each active site based on their DFT energies. This finding highlights how intraparticle heterogeneity, which we show is likely overlooked in many systems due to analytical limitations, can be leveraged toward efficient catalysis.

8.
Chem Commun (Camb) ; 58(82): 11575-11578, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36168847

RESUMO

Chiral plasmonic nanocrystals with varied symmetries were synthesized by L-glutathione-guided overgrowth from Au tetrahedra, nanoplates, and octahedra, highlighting the importance of chiral molecule adsorption at transient kink sites. Large g-factors are possible and depend on symmetry. Simulations of their chiroptical properties from tomographically obtained nanocrystal models further verify their chirality.

9.
Inorg Chem ; 61(31): 12197-12206, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35892174

RESUMO

Volatile lanthanide coordination complexes are critical to the generation of new optical and magnetic materials. One of the most common precursors for preparing volatile lanthanide complexes is the hydrate with the general formula Ln(hfac)3(H2O)x (x = 3 for La-Nd, x = 2 for Sm) (hfac = 1,1,1,5,5,5-hexafluoroacetylacetonato). We have investigated the synthesis of Ln(hfac)3(H2O)x using more environmentally sustainable mechanochemical approaches. Characterization of the products using Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, elemental analysis, and powder X-ray diffraction shows substantial differences in product distribution between methods. The mechanochemical synthesis of the hydrate complexes leads to a variety of coordination compounds including the expected hydrate product, the known retro-Claisen impurity, and hydrated protonated Hhfac ligand depending on the technique employed. Surprisingly, 10-coordinate complexes of the form Na2Ln(hfac)5·3H2O for Ln = La-Nd were also isolated from reactions using a mortar and pestle. The electrostatic bonding of lanthanide coordination complexes is a challenge for obtaining reproducible reactions and clean products. The reproducibility issues are most acute for the large, early lanthanides whereas for the mid to late lanthanides, reproducibility in terms of product distribution and yield is less of an issue because of their smaller size and greater charge to radius ratio. Ball milling increases reproducibility in terms of generating the desired Ln(hfac)3(H2O)x along with hydrated Hhfac (tetraol) and free Hhfac products. The results illustrate the dynamic behavior of lanthanide complexes in solution and the solid state as well as the structural diversity available to the early lanthanides.

10.
Acta Crystallogr C Struct Chem ; 78(Pt 4): 257-264, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35380129

RESUMO

The crystal structures of three ß-halolactic acids have been determined, namely, ß-chlorolactic acid (systematic name: 3-chloro-2-hydroxypropanoic acid, C3H5ClO3) (I), ß-bromolactic acid (systematic name: 3-bromo-2-hydroxypropanoic acid, C3H5BrO3) (II), and ß-iodolactic acid (systematic name: 2-hydroxy-3-iodopropanoic acid, C3H5IO3) (III). The number of molecules in the asymmetric unit of each crystal structure (Z') was found to be two for I and II, and one for III, making I and II isostructural and III unique. The difference between the molecules in the asymmetric units of I and II is due to the direction of the hydrogen bond of the alcohol group to a neighboring molecule. Molecular packing shows that each structure has alternating layers of intermolecular hydrogen bonding and halogen-halogen interactions. Hirshfeld surfaces and two-dimensional fingerprint plots were analyzed to further explore the intermolecular interactions of these structures. In I and II, energy minimization is achieved by lowering of the symmetry to adopt two independent molecular conformations in the asymmetric unit.


Assuntos
Ligação de Hidrogênio , Cristalografia por Raios X , Conformação Molecular
11.
Nanoscale ; 14(17): 6471-6479, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35416234

RESUMO

Traditional colloidal syntheses of metal nanoparticles (NPs) are highly sensitive to the selection of and quality of chemical reducing agents and metal precursors. To address these challenges, we demonstrate the complete sonoelectrochemical synthesis of monodisperse metal NPs starting from bulk metal, using Cu as a model system. Electrochemical syntheses of NPs are of great interest as the oxidation and reduction processes that account for product formation can occur directly at the anode and cathode, respectively. This ability has the potential to improve reproducibility by simplifying the chemical pathway to NPs, with electrosyntheses often also providing unique kinetic pathways toward green product formation. Herein, ultrasound is coupled with electrosynthesis to clean the electrode surface, dispersing the NPs produced at the electrode into solution. We were able to shift the size distribution to form monodispersed metal NPs through control of applied potential (Vapplied) and ultrasonic pulses. The synthesis begins with electrooxidation of bulk Cu metal to directly dissolve metal ions into a microemulsion system. This step is followed by sonoelectroreduction of the ions, which facilitates the formation of dispersible, monodisperse Cu NPs with diameters <10 nm. The size distribution can be controlled by adjusting the Vapplied, pulse intensity, and pulse sequence implemented during sonoelectroreduction. We view this technique as a scalable method to synthesize metal NPs from bulk metal without chemical reducing agents.

12.
ACS Mater Au ; 2(2): 143-153, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36855759

RESUMO

Due to their ordered crystal structures and high structural stabilities, intermetallic nanoparticles often display enhanced catalytic, magnetic, and optical properties compared to their random alloy counterparts. Intermetallic nanoparticles can be achieved by thermal annealing of their disordered (random alloy) counterparts. However, high temperatures and long annealing times needed to achieve the disorder-to-order transition often lead to a loss of sample monodispersity and an increase in the average size of nanoparticles. Here, we performed ex situ powder X-ray diffraction (XRD) and in situ annealing transmission electron microscopy (TEM) experiments to elucidate nanoscale processes that contribute to the ordering of carbon-supported PdCu nanoparticles as a model system. Random alloy PdCu nanoparticles supported on carbon were thermally annealed for various lengths of time at the disorder-to-order phase transition temperature, where changes in nanoparticle size and the crystal phase were monitored. The nanoparticles were only completely transformed to the intermetallic phase by undertaking measures to deliberately increase their size by increasing the number of nanoparticles on the carbon support. In situ annealing TEM experiments reveal nanoscale processes that account for the disorder-to-order phase transformation. Five different processes were observed at 400 °C. Isolated nanoparticles remained in the random alloy phase or underwent a phase transformation to the intermetallic phase. Nanoparticles fused with neighboring nanoparticles resulting in no change in phase or conversion to the intermetallic phase. Evidence of vapor transport was also observed, as some isolated nanoparticles were found to diminish in size upon heating. These variable processes account for the heterogeneity often observed for intermetallic nanoparticle samples achieved through annealing and motivate the development of synthetic routes that suppress particle-particle coalescence, as well as investigating metal-support interactions to facilitate the disorder-to-order phase transformation under mild conditions. Overall, this work furthers our knowledge of the formation of intermetallic nanoparticles by thermal annealing approaches, which could accelerate the development of electrocatalysts and the application of intermetallic nanoparticles in magnetic storage devices.

15.
ACS Appl Mater Interfaces ; 13(31): 36670-36678, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34319712

RESUMO

Heterogeneous photocatalysis provides a promising strategy to generate renewable fuels by harnessing solar energy. Metal heteroanionic photocatalysts have gained attention for their visible-light absorption; however, they are also plagued by photocorrosion, which limits their long-term use. Such photocorrosion occurs from photooxidation of the less electronegative nonoxide ions, leading to decomposition of the material's lattice. In this Perspective, we highlight emerging strategies to develop durable metal heteroanionic photocatalysts. We devote attention to the approaches taken for model metal oxynitrides, oxysulfides, and oxyhalide photocatalysts to provide a holistic framework. This analysis emphasizes the vital roles that interface engineering, charge carrier extraction, and crystal and electronic structure play in providing photodurability. We believe that through these approaches, durable and visible-light-absorbing artificial photosynthetic systems can be developed for a sustainable future.

16.
ACS Appl Mater Interfaces ; 13(44): 51876-51885, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33945682

RESUMO

Bimetallic Pd-based nanoparticles (NPs) are of interest as electrocatalysts for formic acid electrooxidation (FAEO) because of their higher initial catalytic activity and CO tolerance when compared to Pt. Intermetallic NPs (i-NPs) with specific geometric and electronic structures generally exhibit superior catalytic activity, selectivity, and durability when compared to their disordered (random alloy) counterparts; however, the colloidal synthesis of i-NPs remains a challenge. Here, a one-pot method was demonstrated as a facile route to obtain monodisperse Pd-Sn NPs with phase control, including intermetallic hexagonal Pd3Sn2 (P63/mmc), intermetallic orthorhombic Pd2Sn (Pnma), and alloy cubic Pd3Sn (FCC, Fm3m) as size-controlled NPs with quasi-spherical shapes. Initial metal precursor ratios and reaction temperature were critical parameters to achieving phase control. Also, slight modifications of synthetic conditions resulted in either Pd2Sn nanorhombohedra or nanorods with tunable aspect ratios. A systematic evaluation of the Pd-Sn NPs for FAEO showed that most presented higher specific activities when compared to commercial Pd/C, in which Pd2Sn quasi-spheres and nanorhombohedra showed the highest catalytic activity for FAEO. These results highlight the benefits of phase-controlled Pd-based nanocatalysts with defined nanocrystal size and shape, with use of trioctylphospine (TOP) and oleic acid (OA) central to shape and size control.

17.
ACS Nano ; 15(2): 2901-2910, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33559464

RESUMO

Counterfeit goods create significant economic losses and product failures in many industries. Here, we report a covert anticounterfeit platform where plasmonic nanoparticles (NPs) create physically unclonable functions (PUFs) with high encoding capacity. By allowing anisotropic Au NPs of different sizes to deposit randomly, a diversity of surfaces can be facilely tagged with NP deposits that serve as PUFs and are analyzed using optical microscopy. High encoding capacity is engineered into the tags by the sizes of the Au NPs, which provide a range of color responses, while their anisotropy provides sensitivity to light polarization. An estimated encoding capacity of 270n is achieved, which is one of the highest reported to date. Authentication of the tags with deep machine learning allows for high accuracy and rapid matching of a tag to a specific product. Moreover, the tags contain descriptive metadata that is leveraged to match a tag to a specific lot number (i.e., a collection of tags created in the same manner from the same formulation of anisotropic Au NPs). Overall, integration of designer plasmonic NPs with deep machine learning methods can create a rapidly authenticated anticounterfeit platform with high encoding capacity.

18.
Nanoscale ; 13(4): 2618-2625, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33491702

RESUMO

Galvanic replacement reactions are a reliable method for transforming monometallic nanotemplates into bimetallic products with complex nanoscale architectures. When replacing bimetallic nanotemplates, even more complex multimetallic products can be made, with final nanocrystal shapes and architectures depending on multiple processes, including Ostwald ripening and the Kirkendall effect. Galvanic replacement, therefore, is a promising tool in increasing the architectural complexity of multimetallic templates, especially if we can identify and control the relevant processes in a given system and apply them more broadly. Here, we study the transformation of intermetallic PdCu nanoparticles in the presence of HAuCl4 and H2PtCl6, both of which are capable of oxidizing both Pd and Cu. Replacement products consistently lost Cu more quickly than Pd, preserved the crystal structure of the original intermetallic template, and grew a new phase on the sacrificial template. In this way, atomic and nanometer-scale architectures are integrated within individual nanocrystals. Product morphologies included faceting of the original spherical particles as well as formation of core@shell and Janus-style particles. These variations are rationalized in terms of differing diffusion behaviors. Overall, galvanic replacement of multimetallic templates is shown to be a route toward increasingly exotic particle architectures with control exerted on both Angstrom and nanometer-scale features, while inviting further consideration of template and oxidant choices.

19.
Nanoscale Horiz ; 6(3): 231-237, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33480921

RESUMO

High-entropy alloy (HEA) nanoparticles (NPs) hold great promise in electrocatalysis because of their nearly unlimited compositions, tailorable active sites, and high durability. However, the synthesis of these compositionally complex structures as monodisperse NPs remains a challenge by colloidal routes because the different rates of metal precursor reduction lead to phase separation. Here, we report the conversion of core@shell NPs into HEA NPs through annealing, with conservation of sample monodispersity. This potentially general route for high-quality HEA NPs was demonstrated by preparing PdCu@PtNiCo NPs via seed-mediated co-reduction, wherein Pt, Ni, and Co were co-deposited on PdCu seeds in solution. These multimetallic NPs were then converted to single-crystalline and single-phase PdCuPtNiCo NPs through annealing. On account of their small particle size, highly dispersed Pt/Pd content, and low elemental diffusivity, these HEA NPs were found to be a highly efficient and durable catalyst for the oxygen reduction reaction. They were also highly selective for the four-electron transfer pathway. We expect that this new synthetic strategy will facilitate the synthesis of new HEA NPs for catalysis and other applications.

20.
Acc Chem Res ; 54(7): 1662-1672, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33377763

RESUMO

ConspectusWhen combined with earth-abundant metals, Pt-based alloy nanoparticles (NPs) can be cost-effective electrocatalysts. However, these NPs can experience leaching of non-noble-metal components under harsh electrocatalytic conditions. The Skrabalak group has demonstrated a novel NP construct in which Pt-based random alloy surfaces are stabilized against non-noble-metal leaching by their deposition onto intermetallic seeds. These core@shell NPs are highly durable electrocatalysts, with the ability to tune catalytic performance by the core@shell architecture, surface alloy composition, and NP shape. This versatility was demonstrated in a model system in which random alloy (ra-) PtM surfaces were deposited onto ordered intermetallic (i-) PdCu seeds using seed-mediated co-reduction (SMCR). In the initial demonstration, ra-PtCu shells were deposited on i-PdCu seeds, with these core@shell NPs exhibiting higher specific and mass activities for the oxygen reduction reaction (ORR) when compared to similarly sized ra-PtCu NPs. These NPs also showed outstanding durability, maintaining ∼85% in specific activity after 5000 cycles. Characterization of the NPs after use revealed minimal loss of Cu. The activity enhancement was attributed to the strained surface that arises from the lattice mismatch between the intermetallic core and random alloy surface. The outstanding durability was attributed to the ordered structure of the intermetallic core.The origin of this durability enhancement was investigated by classical molecular dynamics simulations, where Pt atoms were found to have a lower potential energy when deposited on an intermetallic core than when deposited on a random alloy core. Also, ordering of Cu atoms at the core@shell interface appears to enhance the overall binding between the core and the shell materials. Inspired by this initial demonstration, SMCR has been used to achieve shells of different random alloy compositions, PtM (M = Ni, Co, Cu, or Fe). This advance is significant because ligand effects vary as a function of PtM identity and Pt/M ratio. These features also influence the degree of surface strain imparted from the lattice mismatch between the core and shell materials. Like the initial demonstration, standout features of these core@shell NPs were high durability and resistance to non-noble metal leaching.Moving forward, efforts have been directed toward integrating shape-control to this core@shell NP construct. This integration is motivated by the shape-dependent catalytic performance of NPs derived from the selective expression of specific facets. Considering the initial i-PdCu@ra-PtCu system, NPs with a cubic shape have been achieved by judicious selection of capping ligands during SMCR. Evaluation of these NPs as catalysts for the electrooxidation of formic acid found that the nanocubic shape enhances catalytic performance compared to similar core@shell NPs with a spherical morphology. We envision that SMCR can be applied to other NP systems to achieve highly durable catalysts as the syntheses of monodisperse and shape-controlled intermetallic seeds are advanced. This Account highlights the role of intermetallic cores in providing more durable electrocatalysts. More broadly, the versatility of SMCR is highlighted as a route to integrate architecture, alloy surfaces, and shape within one NP system, and how this achievement is inspiring new high-performance and robust catalysts is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...