Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Circuits Syst ; 18(1): 27-38, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37527296

RESUMO

One challenge in designing RF wireless bioelectronic devices is the impact of the interaction between electromagnetic waves and host body tissues on far-field wireless performance. In this article, we investigate a peculiar phenomenon of implantable RF wireless devices within a small-scale host body related to the deformation of the directivity pattern. Radiation measurements of subcutaneously implanted antennas within rodent cadavers show that the direction of maximum radiation is not always identical with the direction to the closest body-air interface, as one would expect in larger-scale host bodies. For an implanted antenna in the back of a mouse, we observed the maximum directivity in the ventral direction with 4.6 dB greater gain compared to the nearest body-air interface direction. Analytic analysis within small-scale spherical body phantoms identifies two main factors for these results: the limited absorption losses due to the small body size relative to the operating wavelength and the high permittivity of the biological tissues of the host body. Due to these effects, the entire body acts as a dielectric resonator antenna, leading to deformations of the directivity pattern. These results are confirmed with the practical example of a wirelessly powered 2.4-GHz optogenetic implant, demonstrating the significance of the judicious placement of external antennas to take advantage of the deformation of the implanted antenna pattern. These findings emphasize the importance of carefully designing implantable RF wireless devices based on their placements and relative electrical dimensions in small-scale animal models.


Assuntos
Próteses e Implantes , Tecnologia sem Fio , Animais , Camundongos , Imagens de Fantasmas
2.
Sci Rep ; 11(1): 1953, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479283

RESUMO

Far field superlensing of light has generated great attention in optical focusing and imaging applications. The capability of metamaterials to convert evanescent waves to propagative waves has led to numerous proposals in this regard. The common drawback of these approaches is their poor performance inside strongly scattering media like biological samples. Here, we use a metamaterial structure made out of aluminum nanorods in conjunction with time-reversal technique to exploit all temporal and spatial degrees of freedom for superlensing. Using broadband optics, we numerically show that this structure can perform focusing inside biological tissues with a resolution of λ/10. Moreover, for the imaging scheme we propose the entropy criterion for the image reconstruction step to reduce the number of required optical transducers. We propose an imaging scenario to reconstruct the spreading pattern of a diffusive material inside a tissue. In this way super-resolution images are obtained.

3.
Artigo em Inglês | MEDLINE | ID: mdl-25389156

RESUMO

We present our studies on a compact high-performance continuous wave (CW) double-resonance (DR) rubidium frequency standard in view of future portable applications. Our clock exhibits a short-term stability of 1.4 × 10(-13) τ(-1/2), consistent with the short-term noise budget for an optimized DR signal. The metrological studies on the medium- to longterm stability of our Rb standard with measured stabilities are presented. The dependence of microwave power shift on light intensity, and the possibility to suppress the microwave power shift is demonstrated. The instabilities arising from the vapor cell geometric effect are evaluated, and are found to act on two different time scales (fast and slow stem effects). The resulting medium- to long-term stability limit is around 5.5 × 10(-14). Further required improvements, particularly focusing on medium- to long-term clock performance, are discussed.

4.
Rev Sci Instrum ; 83(10): 104706, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126789

RESUMO

The design, realization, and characterization of a compact magnetron-type microwave cavity operating with a TE(011)-like mode are presented. The resonator works at the rubidium hyperfine ground-state frequency (i.e., 6.835 GHz) by accommodating a glass cell of 25 mm diameter containing rubidium vapor. Its design analysis demonstrates the limitation of the loop-gap resonator lumped model when targeting such a large cell, thus numerical optimization was done to obtain the required performances. Microwave characterization of the realized prototype confirmed the expected working behavior. Double-resonance and Zeeman spectroscopy performed with this cavity indicated an excellent microwave magnetic field homogeneity: the performance validation of the cavity was done by achieving an excellent short-term clock stability as low as 2.4 × 10(-13) τ(-1/2). The achieved experimental results and the compact design make this resonator suitable for applications in portable atomic high-performance frequency standards for both terrestrial and space applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...