Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Discov Nano ; 18(1): 111, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37682347

RESUMO

Carbon dots (CDs) are easy-obtained nanoparticles with wide range of biological activity; however, their toxicity after prolonged exposure is poorly investigated. So, in vitro and in vivo toxicity of CDs with the surfaces enriched with hydroxylated hydrocarbon chains and methylene groups (CD_GE), carboxyl and phenol groups accompanied with nitrogen (CD_3011), trifluoromethyl (CDF19) or toluidine and aniline groups (CDN19) were aimed to be discovered. CDs' in vitro toxicity was assessed on A549 cells (real-time cell analysis of impedance, fluorescence microscopy) after 24 h of incubation, and we observed no changes in cell viability and morphology. CDs' in vivo toxicity was assessed on C57Bl6 mice after multiple dosages (5 mg/kg subcutaneously) for 14 days. Lethality (up to 50%) was observed in CDN19 and CD_3011 groups on different days of dosing, accompanied by toxicity signs in case of CD_3011. There were no changes in serum biochemical parameters except Urea (increased in CDF19 and CD_3011 groups), nor substantial kidney, liver, and spleen injuries. The most impactful for all organs were also CD_3011 and CDF19, causing renal tubule injury and liver blood supply violation. Thus, CDs with a surface enriched with oxygen- and nitrogen-containing functional groups might be toxic after multiple everyday dosing, without, however, significant damages of internal organs in survived animals.

2.
ACS Omega ; 8(23): 21265-21276, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37332808

RESUMO

In this article, the authors theoretically and experimentally investigated ways to improve the efficiency of porous silicon (PS)-based optical microcavity sensors as a 1D/2D host matrix for electronic tongue/nose systems. The transfer matrix method was used to compute reflectance spectra of structures with different [nLnH] sets of low nL and high nH bilayer refractive indexes, the cavity position λc, and the number of bilayers Nbi. Sensor structures were prepared by electrochemically etching a silicon wafer. The kinetics of adsorption/desorption processes of ethanol-water-based solution was monitored in real time with a reflectivity probe-based setup. It was theoretically and experimentally demonstrated that the sensitivity of the microcavity sensor is higher for structures with refractive indexes in the lower range (and the corresponding porosity values in the upper range). The sensitivity is also improved for structures with the optical cavity mode (λc) adjusted toward longer wavelengths. The sensitivity of a distributed Bragg reflector (DBR) with cavity increases for a structure with cavity position λc in the long wavelength region. The full width at half maximum (fwhmc) of the microcavity is smaller and the quality factor of microcavity (Qc) is higher for the DBR with a larger number of structure layers Nbi. The experimental results are in good agreement with the simulated data. We believe that our results can help in developing rapid, sensitive, and reversible electronic tongue/nose sensing devices based on a PS host matrix.

3.
Sci Rep ; 13(1): 9306, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291245

RESUMO

Here, a comparative toxicity assessment of precursor carbon dots from coffee waste (cofCDs) obtained using green chemistry principles and Gd-doped nanohybrids (cofNHs) was performed using hematological, biochemical, histopathological assays in vivo (CD1 mice, intraperitoneal administration, 14 days), and neurochemical approach in vitro (rat cortex nerve terminals, synaptosomes). Serum biochemistry data revealed similar changes in cofCDs and cofNHs-treated groups, i.e. no changes in liver enzymes' activities and creatinine, but decreased urea and total protein values. Hematology data demonstrated increased lymphocytes and concomitantly decreased granulocytes in both groups, which could evidence inflammatory processes in the organism and was confirmed by liver histopathology; decreased red blood cell-associated parameters and platelet count, and increased mean platelet volume, which might indicate concerns with platelet maturation and was confirmed by spleen histopathology. So, relative safety of both cofCDs and cofNHs for kidney, liver and spleen was shown, whereas there were concerns about platelet maturation and erythropoiesis. In acute neurotoxicity study, cofCDs and cofNHs (0.01 mg/ml) did not affect the extracellular level of L-[14C]glutamate and [3H]GABA in nerve terminal preparations. Therefore, cofNHs demonstrated minimal changes in serum biochemistry and hematology assays, had no acute neurotoxicity signs, and can be considered as perspective biocompatible non-toxic theragnostic agent.


Assuntos
Café , Hematologia , Ratos , Camundongos , Animais , Carbono , Neurobiologia , Fígado/patologia
4.
Sci Rep ; 13(1): 3823, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882506

RESUMO

Modern cutting edge technologies of chemical synthesis enable the production of unique nanostructures with excess energy and high reactivity. Uncontrolled use of such materials in the food industry and pharmacology entail a risk for the development of a nanotoxicity crisis. Using the methods of tensometry, mechanokinetic analysis, biochemical methods, and bioinformatics, the current study showed that chronic (for six months) intragastrical burdening of rats with aqueous nanocolloids (AN) ZnO and TiO2 caused violations of the pacemaker-dependent mechanisms of regulation of spontaneous and neurotransmitter-induced contractions of the gastrointestinal tract (GIT) smooth muscles (SMs), and transformed the contraction efficiency indices (AU, in Alexandria units). Under the same conditions, the fundamental principle of distribution of physiologically relevant differences in the numeric values of the mechanokinetic parameters of spontaneous SM contractions between different parts of GIT is violated, which can potentially cause its pathological changes. Using molecular docking, typical bonds in the interfaces of the interaction of these nanomaterials with myosin II, a component of the contractile apparatus of smooth muscle cells (SMC) were investigated. In this connection, the study addressed the question of possible competitive relations between ZnO and TiO2 nanoparticles and actin molecules for binding sites on the myosin II actin-interaction interface. In addition, using biochemical methods, it was shown that chronic long-term exposure to nanocolloids causes changes in the primary active ion transport systems of cell plasma membranes, the activity of marker liver enzymes and disrupts the blood plasma lipid profile, which indicates the hepatotoxic effect of these nanocolloids.


Assuntos
Actinas , Óxido de Zinco , Animais , Ratos , Simulação de Acoplamento Molecular , Trato Gastrointestinal , Proteínas do Citoesqueleto
5.
Nanoscale Res Lett ; 17(1): 127, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36562892

RESUMO

Carbon-based nanomaterials are promising for a wide range of biomedical applications, i.e. drug delivery, therapy, and imaging including photoacoustic tomography, where they can serve as contrast agents, biocompatibility and biodistribution of which should be assessed before clinical setting. In this paper, localization of carbon flurooxide nanoparticles, carbon nanodots from ß-alanine, carbon nanodots from urea and citric acid and glucose-ethylenediamine nanoparticles (NPs) in organs of Wistar rats were studied by photoacoustic measurements after 24 h of their intravenous injection. 16 ns light pulse from a Q-switched Nd:YAG laser with 1064 nm wavelength was used as an excitation source. The laser-induced photoacoustic signals were recorded with a ring piezoelectric detector. Light absorption by carbon NPs resulted in noticeable enhancement of the photoacoustic amplitude in the tissues where the NPs were accumulated. The NPs were preferably accumulated in liver, kidneys and spleen, and to a lesser extent in heart and gastrocnemius muscles. Together with remarkable fluorescent properties of the studied carbon nanomaterials, their photoacoustic responses allow their application for bi-modal fluorescence-photoacoustic bio-imaging.

6.
Nanomaterials (Basel) ; 12(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35889649

RESUMO

Nitrogen- and oxygen-containing carbon nanoparticles (O, N-CDs) were prepared by a facile one-step solvothermal method using urea and citric acid precursors. This method is cost-effective and easily scalable, and the resulting O, N-CDs can be used without additional functionalization and sample pretreatment. The structure of O, N-CDs was characterized by TEM, AFM, Raman, UV-vis, and FTIR spectroscopies. The obtained O, N-CDs with a mean diameter of 4.4 nm can be easily dispersed in aqueous solutions. The colloidal aqueous solutions of O, N-CDs show significant photothermal responses under red-IR and radiofrequency (RF) irradiations. The as-prepared O, N-CDs have a bright temperature-dependent photoluminescence (PL). PL/PLE spectral maps were shown to be used for temperature evaluation purposes in the range of 30-50 °C. In such a way, the O, N-CDs could be used for biomedicine-related applications such as hyperthermia with simultaneous temperature estimation with PL imaging.

7.
ACS Omega ; 6(37): 23960-23976, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34568675

RESUMO

Using the transmission electron microscopy (TEM)/high-resolution TEM (HRTEM) and selected area electron diffraction (SAED) methods, it was shown that the nanocolloids of ZnO contain hydrolyzed ZnO nanoparticles (NPs). Typically, the nanocrystalline ZnO/Zn(OH)2 core is covered by an amorphous shell of zinc hydroxides, preventing the encapsulated crystal core from dissolving. Similar studies were carried out with TiO2 nanocolloids. It was found that burdening of rats for 30 days with a ZnO aqueous nanocolloid (AN) was accompanied by a narrowing of the amplitude range, a decrease (increase) in the frequency of spontaneous contractions (SCs), and an inhibition of the efficiency indices for smooth muscles (SMs) of the antrum and cecum. Under longer (100 days) burdening of rats with AN of ZnO, there was a tendency toward restoring the above parameters. In terms of the value and the direction of changes in most parameters for SCs of SMs, the effects (30 days) of TiO2 AN differed from those for ZnO AN and were almost the same in the case of their long-term impact. It was found that mostly M2-cholinoreceptor-dependent mechanisms of regulating the intracellular concentration of Ca2+ were sensitive to the effect of ZnO and TiO2 ANs. The molecular docking demonstrated that ZnO and TiO2 NPs did not compete with acetylcholine for the site of binding to M3 and M2 cholinoreceptors but may impact the affinity of orthosteric ligands to M2 cholinoreceptors. The studies showed that burdening rats with ZnO and TiO2 ANs was also accompanied by changes in the activity state of both intracellular enzymes and the ion transport systems for Na+, K+, and Ca2+, related to the processes of bile secretion, via the plasma membrane of hepatocytes.

8.
ACS Omega ; 6(29): 18802-18810, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34337220

RESUMO

A simple sensitive method for nonspecific recognition of armagnac, cognac, whiskey, and ethanol/water mixture was developed by using photoluminescence (PL) of carbon nanoparticles (NPs). The carbon NPs were synthesized from the mixture of urea and anhydrous citric acid, followed by few annealing processes to achieve the full effect by solvothermal carbonization. PL features of carbon NPs depend on the alcohol environments in which the NPs are dispersed. PL/PL excitation maps of the alcoholic beverages were mathematically treated, and a final principal component analysis diagram allows visualization of different clusters corresponding to each beverage. The optimal measurement conditions (concentration of NPs in colloidal solution and excitation wavelength) were defined to ensure a reliable recognition level.

9.
Nanomaterials (Basel) ; 10(7)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698314

RESUMO

Hydrogen generation rate is one of the most important parameters which must be considered for the development of engineering solutions in the field of hydrogen energy applications. In this paper, the kinetics of hydrogen generation from oxidation of hydrogenated porous silicon nanopowders in water are analyzed in detail. The splitting of the Si-H bonds of the nanopowders and water molecules during the oxidation reaction results in powerful hydrogen generation. The described technology is shown to be perfectly tunable and allows us to manage the kinetics by: (i) varying size distribution and porosity of silicon nanoparticles; (ii) chemical composition of oxidizing solutions; (iii) ambient temperature. In particular, hydrogen release below 0 °C is one of the significant advantages of such a technological way of performing hydrogen generation.

10.
ACS Omega ; 5(11): 5638-5642, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32226839

RESUMO

A special electronic tongue system based on photoelectric measurements on Si-Si/SiN X sensitive structures is reported. The sensing approach is based on measuring of minority carrier lifetime in silicon-based substrates using microwave-detected photoconductance decay. This inexpensive and environmentally friendly combinatorial electronic sensing platform is able to create characteristic electronic fingerprints of liquids, detect, and recognize them. In particular, an application of the optoelectronic tongue for recognition of vegetable oils and their mixtures is described.

11.
Nanoscale Res Lett ; 12(1): 129, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28235365

RESUMO

Electronic scanning microscopy was used in the work to obtain the image and to identify the sizes of titanium dioxide (TiO2) nanoparticles 21 ± 5 nm. The qualitative and quantitative elemental analysis of the preparations of the caecum, antrum, myometrium, kidneys, and lungs of the rats, burdened with titanium dioxide, was also performed. It was established using the tenzometric method in the isometric mode that the accumulation of titanium dioxide in smooth muscles of the caecum resulted in the considerable, compared to the control, increase in the frequency of their spontaneous contractions, the decrease in the duration of the contraction-relaxation cycle, and the decrease in the indices of muscle functioning efficiency (the index of contractions in Montevideo units (MU) and the index of contractions in Alexandria units (AU)). In the same experimental conditions, there was not the increase, but the decrease in the frequency of spontaneous contractions, the duration of the contraction-relaxation cycle, and the increase in MU and AU indices in the smooth muscles of myometrium (in the group of rats, burdened with TiO2 for 30 days). It was also determined that TiO2 modulates both the mechanisms of the input of extracellular Ca2+ ions and the mechanisms of decreasing the concentration of these cations in smooth muscle cells of the caecum during the generation of the high potassium contraction. In these conditions, there is a considerable increase in the normalized maximal velocity of the contraction phase and the relaxation phase. It was demonstrated in the work that titanium dioxide also changes the cholinergic excitation in these muscles. The impact of titanium dioxide in the group of rats, burdened with TiO2, was accompanied with a considerable impairment of the kinetics of forming the tonic component of the oxytocin-induced contraction of the smooth muscles of myometrium.

12.
Biosens Bioelectron ; 66: 89-94, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25460887

RESUMO

A phenomenon of changes in photoluminescence of porous silicon at variations in medium pH is proposed to be used as a basis for the biosensor system development. The method of conversion of a biochemical signal into an optical one is applied for direct determination of glucose and urea as well as for inhibitory analysis of heavy metal ions. Changes in the quantum yield of porous silicon photoluminescence occur at varying pH of the tested solution due to the enzyme-substrate reaction. When creating the biosensor systems, the enzymes urease and glucose oxidase (GOD) were used as a bioselective material; their optimal concentrations were experimentally determined. It was shown that the photoluminescence intensity of porous silicon increased by 1.7 times when increasing glucose concentration in the GOD-containing reaction medium from 0 to 3.0mM, and decreased by 1.45 times at the same increase in the urea concentration in the urease-containing reaction medium. The calibration curves of dependence of the biosensor system responses on the substrate concentrations are presented. It is shown that the presence of heavy metal ions (Cu(2+), Pb(2+), and Cd(2+)) in the tested solution causes an inhibition of the enzymatic reactions catalyzed by glucose oxidase and urease, which results in a restoration of the photoluminescence quantum yield of porous silicon. It is proposed to use this effect for the inhibitory analysis of heavy metal ions.


Assuntos
Técnicas Biossensoriais/métodos , Glucose/análise , Medições Luminescentes/métodos , Metais Pesados/análise , Silício/química , Ureia/análise , Enzimas Imobilizadas/metabolismo , Glucose Oxidase/metabolismo , Penicillium/enzimologia , Porosidade , Glycine max/enzimologia , Urease/metabolismo
13.
Nanoscale Res Lett ; 9(1): 568, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25328505

RESUMO

Trypsin is often used to detach adhered cell subculture from a substrate. However, the proteolytic activity of trypsin may harm cells by cleaving the cell membrane proteins. The present study shows that cellular uptake of fluorescent nanoparticles is remarkably increased within 24 h after trypsinization. These results highlight the trypsin-induced protein digestion, provoking leaky cell plasma membrane which leads to the strongly enhanced cellular uptake of the nanoparticles. To prevent this effect, one should expose cells to the nanoparticle (NP)-based fluorescent labels at least 48 h after trypsinization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...