Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 13(7)2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201873

RESUMO

The aim of this study was the isolation and characterization, including the phage effect on honeybees in laboratory conditions, of phages active against Paenibacillus larvae, the causative agent of American Foulbrood-a highly infective and easily spreading disease occurring in honeybee larva, and subsequently the development of a preparation to prevent and treat this dangerous disease. From the tested material (over 2500 samples) 35 Paenibacillus spp. strains were obtained and used to search for phages. Five phages specific to Paenibacillus were isolated and characterized (ultrastructure, morphology, biological properties, storage stability, and genome sequence). The characteristics were performed to obtain knowledge of their lytic potential and compose the final phage cocktail with high antibacterial potential and intended use of future field application. Preliminary safety studies have also been carried out on healthy bees, which suggest that the phage preparation administered is harmless.


Assuntos
Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Abelhas/microbiologia , Paenibacillus larvae/virologia , Animais , Bacteriólise , Bacteriófagos/ultraestrutura , Endotoxinas/metabolismo , Especificidade de Hospedeiro , Paenibacillus larvae/metabolismo , Polônia
2.
Microb Drug Resist ; 23(3): 308-320, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27487455

RESUMO

Tyrosyl-tRNA synthetases (TyrRSs) as essential enzymes for all living organisms are good candidates for therapeutic target in the prevention and therapy of microbial infection. We examined the effect of various polyphenols, alkaloids, and terpenes-secondary metabolites produced by higher plants showing many beneficial properties for the human organism, on bacterial aminoacylation reaction. The most potent inhibitors of Escherichia coli TyrRS are epigallocatechin gallate, acacetin, kaempferide, and chrysin, whereas the enzymes from Staphylococcus aureus and Pseudomonas aeruginosa are inhibited mainly by acacetin and chrysin. Most of them act as competitive inhibitors. Structure-activity relationship showed that the most potent flavonoid inhibitors contain hydroxyl group at position 5 and 7 of A ring and OCH3 group at position 4' of B ring.


Assuntos
Antibacterianos/farmacologia , Produtos Biológicos/farmacologia , Tirosina-tRNA Ligase/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Relação Estrutura-Atividade
3.
Biol Chem ; 392(12): 1053-75, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22050222

RESUMO

Squalene monooxygenase catalyzes the epoxidation of C-C double bond of squalene to yield 2,3-oxidosqualene, the key step of sterol biosynthesis pathways in eukaryotes. Sterols are essential compounds of these organisms and squalene epoxidation is an important regulatory point in their synthesis. Squalene monooxygenase downregulation in vertebrates and fungi decreases synthesis of cholesterol and ergosterol, respectively, which makes squalene monooxygenase a potent and attractive target of hypercholesterolemia and antifungal therapies. Currently some fungal squalene monooxygenase inhibitors (terbinafine, naftifine, butenafine) are in clinical use, whereas mammalian enzymes' inhibitors are still under investigation. Research on new squalene monooxygenase inhibitors is important due to the prevalence of hypercholesterolemia and the lack of both sufficient and safe remedies. In this paper we (i) review data on activity and the structure of squalene monooxygenase, (ii) present its inhibitors, (iii) compare current strategies of lowering cholesterol level in blood with some of the most promising strategies, (iv) underline advantages of squalene monooxygenase as a target for hypercholesterolemia therapy, and (v) discuss safety concerns about hypercholesterolemia therapy based on inhibition of cellular cholesterol biosynthesis and potential usage of squalene monooxygenase inhibitors in clinical practice. After many years of use of statins there is some clinical evidence for their adverse effects and only partial effectiveness. Currently they are drugs of choice but are used with many restrictions, especially in case of children, elderly patients and women of childbearing potential. Certainly, for the next few years, statins will continue to be a suitable tool for cost-effective cardiovascular prevention; however research on new hypolipidemic drugs is highly desirable. We suggest that squalene monooxygenase inhibitors could become the hypocholesterolemic agents of the future.


Assuntos
Anticolesterolemiantes/farmacologia , Inibidores Enzimáticos/farmacologia , Hipercolesterolemia/tratamento farmacológico , Esqualeno Mono-Oxigenase/antagonistas & inibidores , Animais , Anticolesterolemiantes/química , Inibidores Enzimáticos/química , Humanos , Hipercolesterolemia/enzimologia , Esqualeno Mono-Oxigenase/metabolismo , Relação Estrutura-Atividade
4.
Postepy Biochem ; 55(4): 373-84, 2009.
Artigo em Polonês | MEDLINE | ID: mdl-20201350

RESUMO

Aminoacyl-tRNA synthetases (aaRS) are essential proteins of all living organisms. It is known that they ensure the fidelity of transfer of genetic information from the DNA into the protein. Not far away it occurred that their role is not confined to catalyze the attachment of amino acids to transfer RNAs and thereby establish the rules of genetic code by virtue of matching the nucleotide triplet of anticodon with cognate amino acid. aaRSs are also engaged in the other crucial cellular processes. So the disturbance of function of any of them often causes serious disorders. Therefore this proteins could be an attractive target of drugs, not only against the mentioned illnesses but also against bacterial, fungal and parasitic infections. Constant progress on this field makes aaRSs still an interesting object of researches.


Assuntos
Aminoacil-tRNA Sintetases/antagonistas & inibidores , Aminoacil-tRNA Sintetases/metabolismo , Aminoacil-tRNA Sintetases/genética , Arteriosclerose/tratamento farmacológico , Arteriosclerose/enzimologia , Doenças Autoimunes/enzimologia , Humanos , Infecções/tratamento farmacológico , Infecções/enzimologia , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...