Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Mol Nutr Food Res ; : e2300888, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39094123

RESUMO

Folate, a vital water-soluble vitamin (B9), requires specific attention as its recommended daily intake frequently is not reached in countries without mandatory fortification. In this regard, biofortification with microorganisms like Bifidobacterium and Streptococcus offers a compelling approach for enhancing food with natural folates. A randomized, nonblinded, and monocentric human pilot study is conducted to assess the bioavailability of a folate-biofortified fermented whey beverage, comprising 3 intervention days and a controlled replenishment phase before and during the assay. Folate plasma concentration (5-CH3-H4folate) is determined using a stable isotope dilution assay and LC-MS/MS detection. Biokinetic parameters (cmax and tmax) are determined, and areas under the curve (AUC) normalized to the basal folate plasma concentration are calculated. An average bioavailability of 17.1% in relation to the 5-CH3-H4folate supplement, ranging from 0% to 39.8%, is obtained. These results reiterate the significance of additional research into folate bioavailability in general and dairy products. Further investigations are warranted into folate-binding proteins (FBP) and other potential limiting factors within the food and individual factors. In summary, biofortification via fermentation emerges as a promising avenue for enhancing the natural folate content in dairy and other food products.

2.
Cell Rep ; 43(8): 114416, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033506

RESUMO

Metabolism oscillates between catabolic and anabolic states depending on food intake, exercise, or stresses that change a multitude of metabolic pathways simultaneously. We present the HuMet Repository for exploring dynamic metabolic responses to oral glucose/lipid loads, mixed meals, 36-h fasting, exercise, and cold stress in healthy subjects. Metabolomics data from blood, urine, and breath of 15 young, healthy men at up to 56 time points are integrated and embedded within an interactive web application, enabling researchers with and without computational expertise to search, visualize, analyze, and contextualize the dynamic metabolite profiles of 2,656 metabolites acquired on multiple platforms. With examples, we demonstrate the utility of the resource for research into the dynamics of human metabolism, highlighting differences and similarities in systemic metabolic responses across challenges and the complementarity of metabolomics platforms. The repository, providing a reference for healthy metabolite changes to six standardized physiological challenges, is freely accessible through a web portal.

5.
Nutrients ; 16(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38794638

RESUMO

Certain micronutrients exhibit immunomodulatory effects. However, no intervention has yet investigated the effect of individualized supplementation on the severity of upper respiratory tract infections (URIs). Therefore, we investigated whether a personalized supplementation moderates the incidence and severity of URI. Selenium, zinc, and vitamin D were measured in dried blood spots from 59 healthy participants. Accordingly, a personalized supplement was provided with or without the respective micronutrients. We used WURSS-21 questionnaires to assess the disease status. The blood values converged during the intervention and micronutrients no longer differed between treated and untreated volunteers at the end of the intervention period. The incidence and severity of the illness did not significantly differ between the groups. However, when analyzing the WURSS-21 scores by the intention to treat, the initially randomized treatment arm revealed a significantly higher score than the placebo arm. Upon acute administration, individualized combinations of selenium, zinc and vitamin D do not reduce the number, or contribute to a milder course of URIs. Therefore, supplementation in acute infectious situations seems questionable. Further studies must address the habitual diet in more detail, to better understand the impact of individual micronutrient status on the prevention of URI.


Assuntos
Suplementos Nutricionais , Micronutrientes , Infecções Respiratórias , Selênio , Vitamina D , Zinco , Humanos , Infecções Respiratórias/prevenção & controle , Masculino , Feminino , Micronutrientes/administração & dosagem , Zinco/sangue , Zinco/administração & dosagem , Adulto , Selênio/sangue , Selênio/administração & dosagem , Vitamina D/sangue , Vitamina D/administração & dosagem , Índice de Gravidade de Doença , Pessoa de Meia-Idade , Adulto Jovem
6.
Nat Commun ; 15(1): 3502, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664378

RESUMO

Beneficial gut bacteria are indispensable for developing colonic mucus and fully establishing its protective function against intestinal microorganisms. Low-fiber diet consumption alters the gut bacterial configuration and disturbs this microbe-mucus interaction, but the specific bacteria and microbial metabolites responsible for maintaining mucus function remain poorly understood. By using human-to-mouse microbiota transplantation and ex vivo analysis of colonic mucus function, we here show as a proof-of-concept that individuals who increase their daily dietary fiber intake can improve the capacity of their gut microbiota to prevent diet-mediated mucus defects. Mucus growth, a critical feature of intact colonic mucus, correlated with the abundance of the gut commensal Blautia, and supplementation of Blautia coccoides to mice confirmed its mucus-stimulating capacity. Mechanistically, B. coccoides stimulated mucus growth through the production of the short-chain fatty acids propionate and acetate via activation of the short-chain fatty acid receptor Ffar2, which could serve as a new target to restore mucus growth during mucus-associated lifestyle diseases.


Assuntos
Colo , Fibras na Dieta , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Mucosa Intestinal , Receptores de Superfície Celular , Animais , Fibras na Dieta/metabolismo , Ácidos Graxos Voláteis/metabolismo , Camundongos , Colo/metabolismo , Colo/microbiologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Masculino , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Feminino , Camundongos Endogâmicos C57BL , Muco/metabolismo , Transplante de Microbiota Fecal , Simbiose , Propionatos/metabolismo , Clostridiales/metabolismo , Acetatos/metabolismo , Adulto
9.
MMW Fortschr Med ; 166(1): 24-25, 2024 01.
Artigo em Alemão | MEDLINE | ID: mdl-38261191
10.
J Agric Food Chem ; 71(49): 19516-19522, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38032344

RESUMO

Roasted coffee contains atractyligenin-2-O-ß-d-glucoside and 3'-O-ß-d-glucosyl-2'-O-isovaleryl-2-O-ß-d-glucosylatractyligenin, which are ingested with the brew. Known metabolites are atractyligenin, atractyligenin-19-O-ß-d-glucuronide (M1), 2ß-hydroxy-15-oxoatractylan-4α-carboxy-19-O-ß-d-glucuronide (M2), and 2ß-hydroxy-15-oxoatractylan-4α-carboxylic acid-2-O-ß-d-glucuronide (M3), but the appearance and pharmacokinetic properties are unknown. Therefore, first time-resolved quantitative data of atractyligenin glycosides and their metabolites in plasma samples from a pilot human intervention study (n = 10) were acquired. None of the compounds were found in the control samples and before coffee consumption (t = 0 h). After coffee, neither of the atractyligenin glycosides appeared in the plasma, but the aglycone atractyligenin and the conjugated metabolite M1 reached an estimated cmax of 41.9 ± 12.5 and 25.1 ± 4.9 nM, respectively, after 1 h. M2 and M3 were not quantifiable until their concentration enormously increased ≥4 h after coffee consumption, reaching an estimated cmax of 2.5 ± 1.9 and 55.0 ± 57.7 nM at t = 10 h. The data suggest that metabolites of atractyligenin could be exploited to indicate coffee consumption.


Assuntos
Café , Glucuronídeos , Humanos , Café/metabolismo , Atractilosídeo , Glicosídeos
11.
Nutrients ; 15(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37764655

RESUMO

Consumption of fiber-rich foods is linked to beneficial effects on chronic diseases and gut health, while implications towards improving satiety and parameters of well-being remain unclear. A randomized placebo-controlled intervention study was conducted to compare the effects of fiber-enriched foods to their non-enriched counterparts in adults over a 12-week period on selected clinical parameters-satiety, quality of life, body sensation, and life satisfaction-subjective health status, and importance of diet for well-being. Quality of life (QOL) differed significantly between intervention and control groups at baseline, throughout, and at the end of the study. No effects on satiety, satisfaction with life, or the importance of diet for well-being could be shown between groups. With higher fiber intake, body sensation ratings increased. A higher BMI was significantly associated with lower-body sensation, subjective health status and quality of life. Fiber-enriched foods do not seem to affect feeling of satiety or parameters of well-being. Larger samples and additional methods are necessary to fully explore the effect of increased fiber intake on patient-related outcomes in more detail.


Assuntos
Doenças Cardiovasculares , Qualidade de Vida , Humanos , Adulto , Alimentos Fortificados , Nível de Saúde , Autoavaliação Diagnóstica
12.
bioRxiv ; 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37609175

RESUMO

The human metabolism constantly responds to stimuli such as food intake, fasting, exercise, and stress, triggering adaptive biochemical processes across multiple metabolic pathways. To understand the role of these processes and disruptions thereof in health and disease, detailed documentation of healthy metabolic responses is needed but still scarce on a time-resolved metabolome-wide level. Here, we present the HuMet Repository, a web-based resource for exploring dynamic metabolic responses to six physiological challenges (exercise, 36 h fasting, oral glucose and lipid loads, mixed meal, cold stress) in healthy subjects. For building this resource, we integrated existing and newly derived metabolomics data measured in blood, urine, and breath samples of 15 young healthy men at up to 56 time points during the six highly standardized challenge tests conducted over four days. The data comprise 1.1 million data points acquired on multiple platforms with temporal profiles of 2,656 metabolites from a broad range of biochemical pathways. By embedding the dataset into an interactive web application, we enable users to easily access, search, filter, analyze, and visualize the time-resolved metabolomic readouts and derived results. Users can put metabolites into their larger context by identifying metabolites with similar trajectories or by visualizing metabolites within holistic metabolic networks to pinpoint pathways of interest. In three showcases, we outline the value of the repository for gaining biological insights and generating hypotheses by analyzing the wash-out of dietary markers, the complementarity of metabolomics platforms in dynamic versus cross-sectional data, and similarities and differences in systemic metabolic responses across challenges. With its comprehensive collection of time-resolved metabolomics data, the HuMet Repository, freely accessible at https://humet.org/, is a reference for normal, healthy responses to metabolic challenges in young males. It will enable researchers with and without computational expertise, to flexibly query the data for their own research into the dynamics of human metabolism.

13.
Nat Metab ; 5(5): 861-879, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37253881

RESUMO

Recent large-scale genomic association studies found evidence for a genetic link between increased risk of type 2 diabetes and decreased risk for adiposity-related traits, reminiscent of metabolically obese normal weight (MONW) association signatures. However, the target genes and cellular mechanisms driving such MONW associations remain to be identified. Here, we systematically identify the cellular programmes of one of the top-scoring MONW risk loci, the 2q24.3 risk locus, in subcutaneous adipocytes. We identify a causal genetic variant, rs6712203, an intronic single-nucleotide polymorphism in the COBLL1 gene, which changes the conserved transcription factor motif of POU domain, class 2, transcription factor 2, and leads to differential COBLL1 gene expression by altering the enhancer activity at the locus in subcutaneous adipocytes. We then establish the cellular programme under the genetic control of the 2q24.3 MONW risk locus and the effector gene COBLL1, which is characterized by impaired actin cytoskeleton remodelling in differentiating subcutaneous adipocytes and subsequent failure of these cells to accumulate lipids and develop into metabolically active and insulin-sensitive adipocytes. Finally, we show that perturbations of the effector gene Cobll1 in a mouse model result in organismal phenotypes matching the MONW association signature, including decreased subcutaneous body fat mass and body weight along with impaired glucose tolerance. Taken together, our results provide a mechanistic link between the genetic risk for insulin resistance and low adiposity, providing a potential therapeutic hypothesis and a framework for future identification of causal relationships between genome associations and cellular programmes in other disorders.


Assuntos
Actinas , Adipócitos , Obesidade Metabolicamente Benigna , Humanos , Adipócitos/metabolismo , Actinas/metabolismo , Obesidade Metabolicamente Benigna/genética , Fatores de Transcrição/genética , Gordura Subcutânea/metabolismo , Células Cultivadas , Haplótipos , Camundongos Knockout , Masculino , Feminino , Camundongos , Animais
14.
FASEB J ; 37(6): e22968, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37178008

RESUMO

Age is a significant risk factor for common noncommunicable diseases, yet the physiological alterations of aging are poorly understood. We were interested in metabolic patterns between cross-sectional cohorts of different age ranges with particular emphasis on waist circumference. We recruited three cohorts of healthy subjects with different age ranges (adolescents 18-25 years, adults 40-65 years, and older citizens 75-85 years) and stratified these based on waist circumference. Using targeted LC-MS/MS metabolite profiling, we analyzed 112 analytes in plasma (amino acids, acylcarnitines, and derivatives). We associated age-related alterations with various anthropometric and functional parameters such as insulin sensitivity and handgrip strength. Strongest age-dependent increases were found for fatty acid-derived acylcarnitines. Amino acid-derived acylcarnitines displayed increased associations with BMI and adiposity. Some essential amino acids changed in opposite directions, being lower at increased age and higher with increasing adiposity. τ-methylhistidine was elevated in older subjects, especially on an adiposity background, suggesting an increased protein turnover. Both aging and adiposity are associated with impaired insulin sensitivity. Skeletal muscle mass decreased with age and increased with adiposity. Profound differences in the metabolite signatures during healthy aging and elevated waist circumference/body weight were found. Opposite changes in skeletal muscle mass as well as possible differences in insulin signaling (relative insulin deficiency in older subjects versus hyperinsulinemia associated with adiposity), might be underlying origins for the observed metabolite signatures. We describe novel associations between metabolites and anthropometric factors during aging which underlines the complex interplay of aging, insulin resistance, and metabolic health.


Assuntos
Resistência à Insulina , Pessoa de Meia-Idade , Adolescente , Humanos , Adulto Jovem , Idoso , Adulto , Resistência à Insulina/fisiologia , Estudos Transversais , Cromatografia Líquida , Força da Mão , Espectrometria de Massas em Tandem , Obesidade , Insulina , Adiposidade/fisiologia , Aminoácidos , Índice de Massa Corporal
15.
Nutrients ; 15(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37049440

RESUMO

Advanced glycation end-products (AGEs) are implicated in vascular aging due to their pro-inflammatory properties. Skin autofluorescence (SAF) is a measure to estimate their deposition. It is an easily quantifiable marker that has been shown to correlate with cardiovascular risk and parameters of metabolic diseases. Herein, we compared skin autofluorescence with other techniques indicating increased cardiovascular diseases, namely, pulse wave velocity (PWVao) and intima-media thickness (IMT). We also studied the impacts of other parameters in deeply phenotyped cohorts of young, middle-aged, and older individuals. SAF, aortic PWVao, and IMT proved to be significantly correlated with each other and with age. However, based on a moderator analysis, we could not show that these associations were affected by age. Some specific parameters such as creatinine and CRP were found to be significantly associated with skin AGE values after adjusting for confounding variables. In conclusion, SAF is a simple screening tool for vascular health with comparable power to more elaborated technical tests.


Assuntos
Espessura Intima-Media Carotídea , Análise de Onda de Pulso , Pessoa de Meia-Idade , Humanos , Biomarcadores/metabolismo , Envelhecimento , Produtos Finais de Glicação Avançada/metabolismo , Pele/metabolismo
16.
Nutrients ; 15(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36904259

RESUMO

BACKGROUND: Non-nutritive sweeteners (NNS) are part of personalized nutrition strategies supporting healthy glycemic control. In contrast, the consumption of non-nutritive sweeteners has been related to person-specific and microbiome-dependent glycemic impairments. Reports on the effects of NNS on our highly individual cellular immune system are sparse. The recent identification of taste receptor expression in a variety of immune cells, however, suggested their immune-modulatory relevance. METHODS: We studied the influence of a beverage-typical NNS system on the transcriptional profiling of sweetener-cognate taste receptors, selected cytokines and their receptors, and on Ca2+ signaling in isolated blood neutrophils. We determined plasma concentrations of saccharin, acesulfame-K, and cyclamate by HPLC-MS/MS, upon ingestion of a soft drink-typical sweetener surrogate. In an open-labeled, randomized intervention study, we determined pre- versus post-intervention transcript levels by RT-qPCR of sweetener-cognate taste receptors and immune factors. RESULTS: Here we show that the consumption of a food-typical sweetener system modulated the gene expression of cognate taste receptors and induced the transcriptional regulation signatures of early homeostasis- and late receptor/signaling- and inflammation-related genes in blood neutrophils, shifting their transcriptional profile from homeostasis to priming. Notably, sweeteners at postprandial plasma concentrations facilitated fMLF (N-formyl-Met-Leu-Phe)-induced Ca2+ signaling. CONCLUSIONS: Our results support the notion of sweeteners priming neutrophils to higher alertness towards their adequate stimuli.


Assuntos
Adoçantes não Calóricos , Edulcorantes , Humanos , Aditivos Alimentares , Homeostase , Neutrófilos , Espectrometria de Massas em Tandem
18.
Front Nutr ; 9: 933526, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211489

RESUMO

Food intake triggers extensive changes in the blood metabolome. The kinetics of these changes depend on meal composition and on intrinsic, health-related characteristics of each individual, making the assessment of changes in the postprandial metabolome an opportunity to assess someone's metabolic status. To enable the usage of dietary challenges as diagnostic tools, profound knowledge about changes that occur in the postprandial period in healthy individuals is needed. In this study, we characterize the time-resolved changes in plasma levels of 634 metabolites in response to an oral glucose tolerance test (OGTT), an oral lipid tolerance test (OLTT), and a mixed meal (SLD) in healthy young males (n = 15). Metabolite levels for samples taken at different time points (20 per individual) during the challenges were available from targeted (132 metabolites) and non-targeted (502 metabolites) metabolomics. Almost half of the profiled metabolites (n = 308) showed a significant change in at least one challenge, thereof 111 metabolites responded exclusively to one particular challenge. Examples include azelate, which is linked to ω-oxidation and increased only in OLTT, and a fibrinogen cleavage peptide that has been linked to a higher risk of cardiovascular events in diabetes patients and increased only in OGTT, making its postprandial dynamics a potential target for risk management. A pool of 89 metabolites changed their plasma levels during all three challenges and represents the core postprandial response to food intake regardless of macronutrient composition. We used fuzzy c-means clustering to group these metabolites into eight clusters based on commonalities of their dynamic response patterns, with each cluster following one of four primary response patterns: (i) "decrease-increase" (valley-like) with fatty acids and acylcarnitines indicating the suppression of lipolysis, (ii) "increase-decrease" (mountain-like) including a cluster of conjugated bile acids and the glucose/insulin cluster, (iii) "steady decrease" with metabolites reflecting a carryover from meals prior to the study, and (iv) "mixed" decreasing after the glucose challenge and increasing otherwise. Despite the small number of subjects, the diversity of the challenges and the wealth of metabolomic data make this study an important step toward the characterization of postprandial responses and the identification of markers of metabolic processes regulated by food intake.

19.
Microb Genom ; 8(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35917163

RESUMO

16S rRNA gene profiling is currently the most widely used technique in microbiome research and allows the study of microbial diversity, taxonomic profiling, phylogenetics, functional and network analysis. While a plethora of tools have been developed for the analysis of 16S rRNA gene data, only a few platforms offer a user-friendly interface and none comprehensively covers the whole analysis pipeline from raw data processing down to complex analysis. We introduce Namco, an R shiny application that offers a streamlined interface and serves as a one-stop solution for microbiome analysis. We demonstrate Namco's capabilities by studying the association between a rich fibre diet and the gut microbiota composition. Namco helped to prove the hypothesis that butyrate-producing bacteria are prompted by fibre-enriched intervention. Namco provides a broad range of features from raw data processing and basic statistics down to machine learning and network analysis, thus covering complex data analysis tasks that are not comprehensively covered elsewhere. Namco is freely available at https://exbio.wzw.tum.de/namco/.


Assuntos
Microbioma Gastrointestinal , Microbiota , Bactérias/genética , Microbioma Gastrointestinal/genética , Microbiota/genética , Filogenia , RNA Ribossômico 16S/genética
20.
Front Nutr ; 9: 932937, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967802

RESUMO

In recent years, bile acids (BA) have received great interest due to their pleiotropic biological activity and the presence of plasma membrane-bound and nuclear receptors. Moreover, BA in blood have been identified by metabolite screening approaches as biomarkers that are associated with various diseases and even with a human longevity phenotype. With the growing interest in the microbiota contribution to the health-disease trajectory, BA that undergo deconjugation and other modifications by bacteria in the large intestine have become a prime target as a microbiome diversity modifier. We here profiled BA by a quantitative and a semiquantitative approach in 15 healthy and phenotypically very similar young individuals for over a 36-h fasting period, an oral glucose tolerance test (OGTT), and an oral lipid tolerance test (OLTT). We demonstrate a remarkable heterogeneity of the responses and describe the different dynamics of the plasma changes that likely originate from different routes by which BA enters the peripheral blood, and that may represent a direct secretion from the liver into the blood and a route that reaches the blood as a spill-over after passing from the gallbladder through the intestine and the portal system. We discuss the finding that an individual transport process involved in the passage of BA could be a critical determinant in the kinetics of plasma appearance and the overall phenotypic variability found.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA