Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Nat Commun ; 15(1): 3021, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589401

RESUMO

Preterm birth is currently the leading cause of neonatal morbidity and mortality. Genetic, immunological and infectious causes are suspected. Preterm infants have a higher risk of severe bacterial neonatal infections, most of which are caused by Escherichia coli an in particular E. coli K1strains. Women with history of preterm delivery have a high risk of recurrence and therefore constitute a target population for the development of vaccine against E. coli neonatal infections. Here, we characterize the immunological, microbiological and protective properties of a live attenuated vaccine candidate in adult female mice and their pups against after a challenge by K1 and non-K1 strains of E. coli. Our results show that the E. coli K1 E11 ∆aroA vaccine induces strong immunity, driven by polyclonal bactericidal antibodies. In our model of meningitis, mothers immunized prior to mating transfer maternal antibodies to pups, which protect newborn mice against various K1 and non-K1 strains of E. coli. Given the very high mortality rate and the neurological sequalae associated with neonatal E. coli K1 meningitis, our results constitute preclinical proof of concept for the development of a live attenuated vaccine against severe E. coli infections in women at risk of preterm delivery.


Assuntos
Infecções por Escherichia coli , Doenças do Recém-Nascido , Meningite , Nascimento Prematuro , Lactente , Adulto , Recém-Nascido , Feminino , Animais , Camundongos , Humanos , Escherichia coli/genética , Vacinas Atenuadas , Nascimento Prematuro/prevenção & controle , Recém-Nascido Prematuro , Infecções por Escherichia coli/prevenção & controle , Doenças do Recém-Nascido/etiologia , Anticorpos , Meningite/etiologia
2.
EMBO Mol Med ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684864

RESUMO

As an important immune stimulator and modulator, IFNγ is crucial for gut homeostasis and its dysregulation links to diverse colon pathologies, such as colitis and colorectal cancer (CRC). Here, we demonstrated that the epigenetic regulator, CBX3 (also known as HP1γ) antagonizes IFNγ signaling in the colon epithelium by transcriptionally repressing two critical IFNγ-responsive genes: STAT1 and CD274 (encoding Programmed death-ligand 1, PD-L1). Accordingly, CBX3 deletion resulted in chronic mouse colon inflammation, accompanied by upregulated STAT1 and CD274 expressions. Chromatin immunoprecipitation indicated that CBX3 tethers to STAT1 and CD274 promoters to inhibit their expression. Reversely, IFNγ significantly reduces CBX3 binding to these promoters and primes gene expression. This antagonist effect between CBX3 and IFNγ on STAT1/PD-L1 expression was also observed in CRC. Strikingly, CBX3 deletion heightened CRC cells sensitivity to IFNγ, which ultimately enhanced their chemosensitivity under IFNγ stimulation in vitro with CRC cells and in vivo with a syngeneic mouse tumor model. Overall, this work reveals that by negatively tuning IFNγ-stimulated immune genes' transcription, CBX3 participates in modulating colon inflammatory response and CRC chemo-resistance.

3.
Ann Rheum Dis ; 83(3): 312-323, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38049981

RESUMO

OBJECTIVES: Alterations in tryptophan (Trp) metabolism have been reported in inflammatory diseases, including rheumatoid arthritis (RA). However, understanding whether these alterations participate in RA development and can be considered putative therapeutic targets remains undetermined.In this study, we combined quantitative Trp metabolomics in the serum from patients with RA and corrective administration of a recombinant enzyme in experimental arthritis to address this question. METHODS: Targeted quantitative Trp metabolomics was performed on the serum from 574 previously untreated patients with RA from the ESPOIR (Etude et Suivi des POlyarthrites Indifférenciées Récentes) cohort and 98 healthy subjects. A validation cohort involved 69 established patients with RA. Dosages were also done on the serum of collagen-induced arthritis (CIA) and collagen antibody-induced arthritis (CAIA) mice and controls. A proof-of-concept study evaluating the therapeutic potency of targeting the kynurenine pathway was performed in the CAIA model. RESULTS: Differential analysis revealed dramatic changes in Trp metabolite levels in patients with RA compared with healthy controls. Decreased levels of kynurenic (KYNA) and xanthurenic (XANA) acids and indole derivatives, as well as an increased level of quinolinic acid (QUIN), were found in the serum of patients with RA. They correlated positively with disease severity (assessed by both circulating biomarkers and disease activity scores) and negatively with quality-of-life scores. Similar profiles of kynurenine pathway metabolites were observed in the CAIA and CIA models. From a mechanistic perspective, we demonstrated that QUIN favours human fibroblast-like synoviocyte proliferation and affected their cellular metabolism, through inducing both mitochondrial respiration and glycolysis. Finally, systemic administration of the recombinant enzyme aminoadipate aminotransferase, responsible for the generation of XANA and KYNA, was protective in the CAIA model. CONCLUSIONS: Altogether, our preclinical and clinical data indicate that alterations in the Trp metabolism play an active role in the pathogenesis of RA and could be considered as a new therapeutic avenue.


Assuntos
Artrite Experimental , Artrite Reumatoide , Humanos , Animais , Camundongos , Triptofano/uso terapêutico , Cinurenina/uso terapêutico , Biomarcadores , Artrite Experimental/patologia
4.
Cell Immunol ; 395-396: 104796, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38104514

RESUMO

Newborns, whether born prematurely or at term, have a fully formed but naive immune system that must adapt to the extra-uterine environment to prevent infections. Maternal immunity, transmitted through the placenta and breast milk, protects newborns against infections, primarily via immunoglobulins (IgG and IgA) and certain maternal immune cells also known as microchimeric cells. Recently, it also appeared that the maternal gut microbiota played a vital role in neonatal immune maturation via microbial compounds impacting immune development and the establishment of immune tolerance. In this context, maternal vaccination is a powerful tool to enhance even more maternal and neonatal health. It involves the transfer of vaccine-induced antibodies to protect both mother and child from infectious diseases. In this work we review the state of the art on maternal immune factors involved in the prevention of neonatal bacterial infections, with particular emphasis on the role of maternal vaccination in protecting neonates against bacterial disease.


Assuntos
Infecções Bacterianas , Doenças Transmissíveis , Gravidez , Feminino , Criança , Recém-Nascido , Humanos , Leite Humano , Fatores Imunológicos , Infecções Bacterianas/prevenção & controle , Anticorpos Antivirais
5.
PLoS Pathog ; 19(9): e1011612, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37676873

RESUMO

The increase in emerging drug resistant Gram-negative bacterial infections is a global concern. In addition, there is growing recognition that compromising the microbiota through the use of broad-spectrum antibiotics can impact long term patient outcomes. Therefore, there is the need to develop new bactericidal strategies to combat Gram-negative infections that would address these specific issues. In this study, we report and characterize one such approach, an antibody-drug conjugate (ADC) that combines (i) targeting the surface of a specific pathogenic organism through a monoclonal antibody with (ii) the high killing activity of an antimicrobial peptide. We focused on a major pathogenic Gram-negative bacterium associated with antibacterial resistance: Pseudomonas aeruginosa. To target this organism, we designed an ADC by fusing an antimicrobial peptide to the C-terminal end of the VH and/or VL-chain of a monoclonal antibody, VSX, that targets the core of P. aeruginosa lipopolysaccharide. This ADC demonstrates appropriately minimal levels of toxicity against mammalian cells, rapidly kills P. aeruginosa strains, and protects mice from P. aeruginosa lung infection when administered therapeutically. Furthermore, we found that the ADC was synergistic with several classes of antibiotics. This approach described in this study might result in a broadly useful strategy for targeting specific pathogenic microorganisms without further augmenting antibiotic resistance.


Assuntos
Infecções Bacterianas , Imunoconjugados , Animais , Camundongos , Pseudomonas aeruginosa , Anticorpos Monoclonais/farmacologia , Antibacterianos/farmacologia , Peptídeos Antimicrobianos , Mamíferos
6.
EBioMedicine ; 88: 104439, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36709579

RESUMO

BACKGROUND: Worldwide, Escherichia coli is the leading cause of neonatal Gram-negative bacterial meningitis, but full understanding of the pathogenesis of this disease is not yet achieved. Moreover, to date, no vaccine is available against bacterial neonatal meningitis. METHODS: Here, we used Transposon Sequencing of saturated banks of mutants (TnSeq) to evaluate E. coli K1 genetic fitness in murine neonatal meningitis. We identified E. coli K1 genes encoding for factors important for systemic dissemination and brain infection, and focused on products with a likely outer-membrane or extra-cellular localization, as these are potential vaccine candidates. We used in vitro and in vivo models to study the efficacy of active and passive immunization. RESULTS: We selected for further study the conserved surface polysaccharide Poly-ß-(1-6)-N-Acetyl Glucosamine (PNAG), as a strong candidate for vaccine development. We found that PNAG was a virulence factor in our animal model. We showed that both passive and active immunization successfully prevented and/or treated meningitis caused by E. coli K1 in neonatal mice. We found an excellent opsonophagocytic killing activity of the antibodies to PNAG and in vitro these antibodies were also able to decrease binding, invasion and crossing of E. coli K1 through two blood brain barrier cell lines. Finally, to reinforce the potential of PNAG as a vaccine candidate in bacterial neonatal meningitis, we demonstrated that Group B Streptococcus, the main cause of neonatal meningitis in developed countries, also produced PNAG and that antibodies to PNAG could protect in vitro and in vivo against this major neonatal pathogen. INTERPRETATION: Altogether, these results indicate the utility of a high-throughput DNA sequencing method to identify potential immunotherapy targets for a pathogen, including in this study a potential broad-spectrum target for prevention of neonatal bacterial infections. FUNDINGS: ANR Seq-N-Vaq, Charles Hood Foundation, Hearst Foundation, and Groupe Pasteur Mutualité.


Assuntos
Escherichia coli , Meningites Bacterianas , Animais , Camundongos , Escherichia coli/genética , Anticorpos Antibacterianos , Bactérias/genética , Imunoterapia , Sequenciamento de Nucleotídeos em Larga Escala
7.
Stem Cell Rev Rep ; 19(3): 585-600, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36422774

RESUMO

Since the beginning of the Coronavirus disease (COVID)-19 pandemic in December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been responsible for more than 600 million infections and 6.5 million deaths worldwide. Given the persistence of SARS-CoV-2 and its ability to develop new variants, the implementation of an effective and long-term herd immunity appears to be crucial to overcome the pandemic. While a vast field of research has focused on the role of humoral immunity against SARS-CoV-2, a growing body of evidence suggest that antibodies alone only confer a partial protection against infection of reinfection which could be of high importance regarding the strategic development goals (SDG) of the United Nations (UN) and in particular UN SDG3 that aims towards the realization of good health and well being on a global scale in the context of the COVID-19 pandemic.In this review, we highlight the role of humoral immunity in the host defense against SARS-CoV-2, with a focus on highly neutralizing antibodies. We summarize the results of the main clinical trials leading to an overall disappointing efficacy of convalescent plasma therapy, variable results of monoclonal neutralizing antibodies in patients with COVID-19 but outstanding results for the mRNA based vaccines against SARS-CoV-2. Finally, we advocate that beyond antibody responses, the development of a robust cellular immunity against SARS-CoV-2 after infection or vaccination is of utmost importance for promoting immune memory and limiting disease severity, especially in case of (re)-infection by variant viruses.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Vacinas contra COVID-19 , Pandemias/prevenção & controle , Soroterapia para COVID-19 , Anticorpos Neutralizantes/uso terapêutico
8.
Antibiotics (Basel) ; 11(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35740122

RESUMO

Bacteria within biofilms may be exposed to sub-minimum inhibitory concentrations (sub-MICs) of antibiotics. Cell-to-cell contact within biofilms facilitates horizontal gene transfers and favors induction of the SOS response. Altogether, it participates in the emergence of antibiotic resistance. Aminoglycosides at sub-MICs can induce the SOS response through NO accumulation in E. coli carrying the small plasmid with the quinolone resistance qnrD gene (pDIJ09-518a). In this study, we show that in E. coli pDIJ09-518a, the SOS response triggered by sub-MICs of aminoglycosides has important consequences, promoting genetic rearrangement in class 1 integrons and biofilm formation. We found that the integrase expression was increased in E. coli carrying pDIJ09-518a in the presence of tobramycin, which was not observed for the WT isogenic strain that did not carry the qnrD-plasmid. Moreover, we showed that biofilm production was significantly increased in E. coli WT/pDIJ09-518a compared to the WT strain. However, such a higher production was decreased when the Hmp-NO detoxification pathway was fully functional by overexpressing Hmp. Our results showing that a qnrD-plasmid can promote biofilm formation in E. coli and potentiate the acquisition and spread of resistance determinants for other antibiotics complicate the attempts to counteract antibiotic resistance and prevention of biofilm development even further. We anticipate that our findings emphasize the complex challenges that will impact the decisions about antibiotic stewardship, and other decisions related to retaining antibiotics as effective drugs and the development of new drugs.

9.
Elife ; 112022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35037621

RESUMO

The plasmid-mediated quinolone resistance (PMQR) genes have been shown to promote high-level bacterial resistance to fluoroquinolone antibiotics, potentially leading to clinical treatment failures. In Escherichia coli, sub-minimum inhibitory concentrations (sub-MICs) of the widely used fluoroquinolones are known to induce the SOS response. Interestingly, the expression of several PMQR qnr genes is controlled by the SOS master regulator, LexA. During the characterization of a small qnrD-plasmid carried in E. coli, we observed that the aminoglycosides become able to induce the SOS response in this species, thus leading to the elevated transcription of qnrD. Our findings show that the induction of the SOS response is due to nitric oxide (NO) accumulation in the presence of sub-MIC of aminoglycosides. We demonstrated that the NO accumulation is driven by two plasmid genes, ORF3 and ORF4, whose products act at two levels. ORF3 encodes a putative flavin adenine dinucleotide (FAD)-binding oxidoreductase which helps NO synthesis, while ORF4 codes for a putative fumarate and nitrate reductase (FNR)-type transcription factor, related to an O2-responsive regulator of hmp expression, able to repress the Hmp-mediated NO detoxification pathway of E. coli. Thus, this discovery, that other major classes of antibiotics may induce the SOS response could have worthwhile implications for antibiotic stewardship efforts in preventing the emergence of resistance.


Assuntos
Aminoglicosídeos/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli , Plasmídeos/genética , Resposta SOS em Genética/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/fisiologia , Óxido Nítrico/metabolismo , Quinolonas
10.
Pathogens ; 10(11)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34832531

RESUMO

Non-pharmaceutical interventions (NPIs) were implemented to reduce the spread of coronavirus disease 2019 (COVID-19). A first national lockdown was decided in France on the 17 March 2020. These measures had an impact on other viral and non-viral infectious diseases. We aimed to assess this impact on community-acquired pneumonia (CAP) in children. We performed a quasi-experimental interrupted time series analysis. We used data from a French prospective surveillance system of six pediatric emergency departments (PEDs). All visits from 1 January 2017 to 31 December 2020 were included. Pre-intervention period was before 17 March 2020 and post-intervention period was after 18 March 2020. We estimated the impact on the weekly number of visits for CAP and CAP admission using quasi-Poisson regression modeling. A total of 981,782 PEDs visits were analyzed; among them, 8318 visits were associated with CAP, and 1774 of these were followed by a hospital admission. A major decrease was observed for CAP visits (-79.7% 95% CI [-84.3; -73.8]; p < 0.0001), and CAP admission (-71.3% 95 CI [-78.8; -61.1]; p < 0.0001). We observed a dramatic decrease of CAP in children following NPIs implementation. Further studies are required to assess the long-term impact of these measures.

11.
Angiogenesis ; 24(4): 755-788, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34184164

RESUMO

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is presenting as a systemic disease associated with vascular inflammation and endothelial injury. Severe forms of SARS-CoV-2 infection induce acute respiratory distress syndrome (ARDS) and there is still an ongoing debate on whether COVID-19 ARDS and its perfusion defect differs from ARDS induced by other causes. Beside pro-inflammatory cytokines (such as interleukin-1 ß [IL-1ß] or IL-6), several main pathological phenomena have been seen because of endothelial cell (EC) dysfunction: hypercoagulation reflected by fibrin degradation products called D-dimers, micro- and macrothrombosis and pathological angiogenesis. Direct endothelial infection by SARS-CoV-2 is not likely to occur and ACE-2 expression by EC is a matter of debate. Indeed, endothelial damage reported in severely ill patients with COVID-19 could be more likely secondary to infection of neighboring cells and/or a consequence of inflammation. Endotheliopathy could give rise to hypercoagulation by alteration in the levels of different factors such as von Willebrand factor. Other than thrombotic events, pathological angiogenesis is among the recent findings. Overexpression of different proangiogenic factors such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF-2) or placental growth factors (PlGF) have been found in plasma or lung biopsies of COVID-19 patients. Finally, SARS-CoV-2 infection induces an emergency myelopoiesis associated to deregulated immunity and mobilization of endothelial progenitor cells, leading to features of acquired hematological malignancies or cardiovascular disease, which are discussed in this review. Altogether, this review will try to elucidate the pathophysiology of thrombotic complications, pathological angiogenesis and EC dysfunction, allowing better insight in new targets and antithrombotic protocols to better address vascular system dysfunction. Since treating SARS-CoV-2 infection and its potential long-term effects involves targeting the vascular compartment and/or mobilization of immature immune cells, we propose to define COVID-19 and its complications as a systemic vascular acquired hemopathy.


Assuntos
COVID-19/metabolismo , Mielopoese , Neovascularização Patológica/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , SARS-CoV-2/metabolismo , Trombose/metabolismo , COVID-19/patologia , COVID-19/terapia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais/virologia , Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Proteínas de Membrana/metabolismo , Neovascularização Patológica/patologia , Neovascularização Patológica/terapia , Neovascularização Patológica/virologia , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/virologia , Trombose/patologia , Trombose/terapia , Trombose/virologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator de von Willebrand/metabolismo
12.
Front Nutr ; 8: 574311, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33748168

RESUMO

To promote breast feeding and breast pumping is essential for the most vulnerable infants even if the current coronavirus disease 2019 (COVID-19) pandemic sanitary crisis imposes more stringent hygienic measures. As recommended by the Centers for Disease Control and Prevention, World Health Organization, and Milk Bank Association, "after each pumping session, all pump part that come into contact with breast milk should be appropriately disinfected." The present study proposed different methods than can be used and focus on the safety analysis of chlorine solution (CS) in terms of residual hypochlorous acid (HCA) and total trihalomethanes (THM). We also performed an efficacy testing of the CS approach to decontaminate the devices used to collect the milk (breast pumps and bottles). The bacteriologic results of 1,982 breast pump milk samples collected in three different settings showed a major decrease of the microbial contamination using either sterile device or decontamination with CS compared to a simple soap washing. The main messages from our study are to propose a guideline for the safe use of CS and to define situations when breast pump decontamination might be necessary: vulnerable babies for which sterile device is recommended; special circumstances, for example the current COVID-19 pandemic; special situations, for example women living in precarious conditions; or women pumping their milk at work but that would have low or no access to boiled water. Overall, cold decontamination reduced losses of milk for bacteriological reasons in human milk banks and may also be interesting to prevent horizontal contamination by virus like COVID-19.

13.
Clin Infect Dis ; 72(2): 319-322, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33501967

RESUMO

A time series analysis of 871 543 pediatric emergency visits revealed that the coronavirus disease 2019 (COVID-19) lockdown and school closures were associated with a significant decrease in infectious diseases disseminated through airborne or fecal-oral transmission: common cold, gastroenteritis, bronchiolitis, and acute otitis. No change was found for urinary tract infections.


Assuntos
COVID-19 , Pandemias , Criança , Controle de Doenças Transmissíveis , Humanos , SARS-CoV-2 , Instituições Acadêmicas
16.
Antiviral Res ; 184: 104763, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32151645

RESUMO

Influenza A infections cause significant seasonal morbidity and mortality as well as periodic pandemic infections. Currently, no approved therapies exist for patients hospitalized with influenza. The efficacy of VIS410, a broadly neutralizing human immunoglobulin IgG1 monoclonal antibody engineered to bind to the stem region of group 1 and 2 influenza A hemagglutinins, was explored in experimental human influenza infection. Healthy volunteers were inoculated with influenza A/California/07/2009 (H1N1) and received a single dose of VIS410 or placebo 24 h later. Subjects were monitored for symptoms, viral shedding, and safety, including cytokine measurements. The primary efficacy endpoint was the area under the curve (AUC) of viral load (VL) in the VIS410 group versus placebo. VIS410 treatment was associated with a 76% reduction in median VL AUC as measured by qRT-PCR (p = 0.024). Similar VIS410 antiviral activity was observed by virus culture, with a 91% reduction in median VL AUC by TCID50 (p = 0.019) compared to placebo-treated volunteers. Influenza symptoms were generally mild or moderate, with a trend toward faster resolution in VIS410-treated subjects. Treatment with VIS410 was generally safe, with an increase in gastrointestinal events that were largely mitigated by pre-treatment with oral diphenhydramine (50 mg) in combination with 600 mg of ibuprofen. Transient elevation of specific cytokines (IL-8 and TNFα) were associated with gastrointestinal adverse events. Treatment with VIS410 did not interfere with the endogenous immune response to influenza A. These data indicate that VIS410 may provide therapeutic benefit in influenza A infection. TRIAL REGISTRATION: ClinicaTtrials.gov Identification NCT02468115; https://clinicaltrials.gov/ct2/show/NCT02468115?term=NCT02468115&rank=1).


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antivirais/uso terapêutico , Anticorpos Amplamente Neutralizantes/uso terapêutico , Influenza Humana/tratamento farmacológico , Adulto , Anticorpos Antivirais , Citocinas/imunologia , Relação Dose-Resposta a Droga , Determinação de Ponto Final , Feminino , Humanos , Imunidade , Imunoglobulina G/uso terapêutico , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/imunologia , Masculino , Pessoa de Meia-Idade , RNA Viral , Resultado do Tratamento , Carga Viral , Adulto Jovem
17.
PLoS Genet ; 15(3): e1008018, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30849075

RESUMO

Several bacteria in the gut microbiota have been shown to be associated with inflammatory bowel disease (IBD), and dozens of IBD genetic variants have been identified in genome-wide association studies. However, the role of the microbiota in the etiology of IBD in terms of host genetic susceptibility remains unclear. Here, we studied the association between four major genetic variants associated with an increased risk of IBD and bacterial taxa in up to 633 IBD cases. We performed systematic screening for associations, identifying and replicating associations between NOD2 variants and two taxa: the Roseburia genus and the Faecalibacterium prausnitzii species. By exploring the overall association patterns between genes and bacteria, we found that IBD risk alleles were significantly enriched for associations concordant with bacteria-IBD associations. To understand the significance of this pattern in terms of the study design and known effects from the literature, we used counterfactual principles to assess the fitness of a few parsimonious gene-bacteria-IBD causal models. Our analyses showed evidence that the disease risk of these genetic variants were likely to be partially mediated by the microbiome. We confirmed these results in extensive simulation studies and sensitivity analyses using the association between NOD2 and F. prausnitzii as a case study.


Assuntos
Microbioma Gastrointestinal/genética , Interações entre Hospedeiro e Microrganismos/genética , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/microbiologia , Adulto , Proteínas Adaptadoras de Sinalização CARD/genética , Clostridiales/genética , Clostridiales/isolamento & purificação , Clostridiales/patogenicidade , Faecalibacterium prausnitzii/genética , Faecalibacterium prausnitzii/isolamento & purificação , Faecalibacterium prausnitzii/patogenicidade , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Humanos , Doenças Inflamatórias Intestinais/etiologia , Masculino , Pessoa de Meia-Idade , Modelos Genéticos , Proteína Adaptadora de Sinalização NOD2/genética , Polimorfismo de Nucleotídeo Único
18.
Nat Genet ; 49(12): 1789-1795, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29038595

RESUMO

Testing for associations in big data faces the problem of multiple comparisons, wherein true signals are difficult to detect on the background of all associations queried. This difficulty is particularly salient in human genetic association studies, in which phenotypic variation is often driven by numerous variants of small effect. The current strategy to improve power to identify these weak associations consists of applying standard marginal statistical approaches and increasing study sample sizes. Although successful, this approach does not leverage the environmental and genetic factors shared among the multiple phenotypes collected in contemporary cohorts. Here we developed covariates for multiphenotype studies (CMS), an approach that improves power when correlated phenotypes are measured on the same samples. Our analyses of real and simulated data provide direct evidence that correlated phenotypes can be used to achieve increases in power to levels often surpassing the power gained by a twofold increase in sample size.


Assuntos
Estudos de Associação Genética/métodos , Variação Genética , Estudo de Associação Genômica Ampla/métodos , Análise Multivariada , Algoritmos , Genótipo , Humanos , Modelos Genéticos , Fenótipo , Reprodutibilidade dos Testes , Tamanho da Amostra
19.
Clin Infect Dis ; 65(9): 1469-1476, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29048511

RESUMO

BACKGROUND: Many antibiotics are prescribed inappropriately in pediatric emergency departments (PEDs), but little data are available in these settings about effective interventions based on guidelines that follow the antimicrobial stewardship principle. Our aim was to assess the impact of implementing the 2011 national guidelines on antibiotic prescriptions for acute respiratory tract infection (ARTI) in PEDs. METHOD: We conducted a multicentric, quasiexperimental, interrupted time series analysis of prospectively collected electronic data from 7 French PEDs. We included all pediatric patients who visited a participating PED during the study period from November 2009 to October 2014 and were diagnosed with an ARTI. The intervention consisted of local protocol implementation, education sessions, and feedback. The main outcome was the antibiotic prescription rate of discharge prescriptions for ARTI per 1000 PED visits before and after implementation, analyzed using the segmented regression model. RESULTS: We included 242534 patients with an ARTI. The intervention was associated with a significant change in slope for the antibiotic prescription rate per 1000 PED visits (-0.4% per 15-day period, P = .04), and the cumulative effect at the end of the study was estimated to be -30.9%, (95% CI [-45.2 to -20.1]), representing 13136 avoided antibiotic prescriptions. The broad-spectrum antibiotic prescription relative percentage decreased dramatically (-62.7%, 95% CI [-92.8; -32.7]) and was replaced by amoxicillin. CONCLUSION: Implementation of the 2011 national French guidelines led to a significant decrease in the antibiotic prescription rate for ARTI and a dramatic drop in broad-spectrum antibiotic prescriptions, in favor of amoxicillin.


Assuntos
Antibacterianos/uso terapêutico , Gestão de Antimicrobianos , Prescrições de Medicamentos/estatística & dados numéricos , Infecções Respiratórias/epidemiologia , Adolescente , Criança , Pré-Escolar , Serviço Hospitalar de Emergência , Humanos , Lactente , Recém-Nascido , Análise de Séries Temporais Interrompida , Guias de Prática Clínica como Assunto , Estudos Prospectivos , Infecções Respiratórias/tratamento farmacológico , Resultado do Tratamento
20.
Infect Immun ; 85(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28348057

RESUMO

Burkholderia dolosa caused an outbreak in the cystic fibrosis (CF) clinic at Boston Children's Hospital from 1998 to 2005 and led to the infection of over 40 patients, many of whom died due to complications from infection by this organism. To assess whether B. dolosa significantly contributes to disease or is recognized by the host immune response, mice were infected with a sequenced outbreak B. dolosa strain, AU0158, and responses were compared to those to the well-studied CF pathogen Pseudomonas aeruginosa In parallel, mice were also infected with a polar flagellin mutant of B. dolosa to examine the role of flagella in B. dolosa lung colonization. The results showed a higher persistence in the host by B. dolosa strains, and yet, neutrophil recruitment and cytokine production were lower than those with P. aeruginosa The ability of host immune cells to recognize B. dolosa was then assessed, B. dolosa induced a robust cytokine response in cultured cells, and this effect was dependent on the flagella only when bacteria were dead. Together, these results suggest that B. dolosa can be recognized by host cells in vitro but may avoid or suppress the host immune response in vivo through unknown mechanisms. B. dolosa was then compared to other Burkholderia species and found to induce similar levels of cytokine production despite being internalized by macrophages more than Burkholderia cenocepacia strains. These data suggest that B. dolosa AU0158 may act differently with host cells and is recognized differently by immune systems than are other Burkholderia strains or species.


Assuntos
Infecções por Burkholderia/imunologia , Fibrose Cística/complicações , Citocinas/imunologia , Flagelos/imunologia , Flagelina/genética , Animais , Lavagem Broncoalveolar , Burkholderia/genética , Burkholderia/imunologia , Infecções por Burkholderia/microbiologia , Linhagem Celular , Fibrose Cística/microbiologia , Modelos Animais de Doenças , Epidemias , Feminino , Flagelos/genética , Humanos , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...