Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Redox Biol ; 75: 103257, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38955113

RESUMO

Ferroptosis, a lipid peroxidation-driven cell death program kept in check by glutathione peroxidase 4 and endogenous redox cycles, promises access to novel strategies for treating therapy-resistant cancers. Chlorido [N,N'-disalicylidene-1,2-phenylenediamine]iron (III) complexes (SCs) have potent anti-cancer properties by inducing ferroptosis, apoptosis, or necroptosis through still poorly understood molecular mechanisms. Here, we show that SCs preferentially induce ferroptosis over other cell death programs in triple-negative breast cancer cells (LC50 ≥ 0.07 µM) and are particularly effective against cell lines with acquired invasiveness, chemo- or radioresistance. Redox lipidomics reveals that initiation of cell death is associated with extensive (hydroper)oxidation of arachidonic acid and adrenic acid in membrane phospholipids, specifically phosphatidylethanolamines and phosphatidylinositols, with SCs outperforming established ferroptosis inducers. Mechanistically, SCs effectively catalyze one-electron transfer reactions, likely via a redox cycle involving the reduction of Fe(III) to Fe(II) species and reversible formation of oxo-bridged dimeric complexes, as supported by cyclic voltammetry. As a result, SCs can use hydrogen peroxide to generate organic radicals but not hydroxyl radicals and oxidize membrane phospholipids and (membrane-)protective factors such as NADPH, which is depleted from cells. We conclude that SCs catalyze specific redox reactions that drive membrane peroxidation while interfering with the ability of cells, including therapy-resistant cancer cells, to detoxify phospholipid hydroperoxides.

2.
Inflamm Regen ; 43(1): 53, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37904253

RESUMO

BACKGROUND: Chronic non-healing wounds pose a global health challenge. Under optimized conditions, skin wounds heal by the formation of scar tissue. However, deregulated cell activation leads to persistent inflammation and the formation of granulation tissue, a type of premature scar tissue without epithelialization. Regenerative cells from the wound periphery contribute to the healing process, but little is known about their cellular fate in an inflammatory, macrophage-dominated wound microenvironment. METHODS: We examined CD45-/CD31-/CD34+ preadipocytes and CD68+ macrophages in human granulation tissue from pressure ulcers (n=6) using immunofluorescence, immunohistochemistry, and flow cytometry. In vitro, we studied macrophage-preadipocyte interactions using primary human adipose-derived stem cells (ASCs) exposed to conditioned medium harvested from IFNG/LPS (M1)- or IL4/IL13 (M2)-activated macrophages. Macrophages were derived from THP1 cells or CD14+ monocytes. In addition to confocal microscopy and flow cytometry, ASCs were analyzed for metabolic (OXPHOS, glycolysis), morphological (cytoskeleton), and mitochondrial (ATP production, membrane potential) changes. Angiogenic properties of ASCs were determined by HUVEC-based angiogenesis assay. Protein and mRNA levels were assessed by immunoblotting and quantitative RT-PCR. RESULTS: CD45-/CD31-/CD34+ preadipocytes were observed with a prevalence of up to 1.5% of total viable cells in human granulation tissue. Immunofluorescence staining suggested a spatial proximity of these cells to CD68+ macrophages in vivo. In vitro, ASCs exposed to M1, but not to M2 macrophage secretome showed a pro-fibrotic response characterized by stress fiber formation, elevated alpha smooth muscle actin (SMA), and increased expression of integrins ITGA5 and ITGAV. Macrophage-secreted IL1B and TGFB1 mediated this response via the PI3K/AKT and p38-MAPK pathways. In addition, ASCs exposed to M1-inflammatory stress demonstrated reduced migration, switched to a glycolysis-dominated metabolism with reduced ATP production, and increased levels of inflammatory cytokines such as IL1B, IL8, and MCP1. Notably, M1 but not M2 macrophages enhanced the angiogenic potential of ASCs. CONCLUSION: Preadipocyte fate in wound tissue is influenced by macrophage polarization. Pro-inflammatory M1 macrophages induce a pro-fibrotic response in ASCs through IL1B and TGFB1 signaling, while anti-inflammatory M2 macrophages have limited effects. These findings shed light on cellular interactions in chronic wounds and provide important information for the potential therapeutic use of ASCs in human wound healing.

4.
Cells ; 12(2)2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36672272

RESUMO

Unfavorable clinical outcomes mean that cancer researchers must attempt to develop novel therapeutic strategies to overcome therapeutic resistance in patients with HNSCC. Recently, ferroptosis was shown to be a promising pathway possessing druggable targets, such as xCT (SLC7A11). Unfortunately, little is known about the molecular mechanisms underlying the susceptibility of HNSCC cells to ferroptosis. The goal of this study was to determine whether HNSCC cells with activated Erk1/2 are vulnerable to ferroptosis induction. Our results have shown that xCT (SLC7A11) was overexpressed in malignant tissues obtained from the patients with HNSCC, whereas normal mucosa demonstrated weak expression of the protein. In order to investigate the role of Erk1/2 in the decrease in cell viability caused by erastin, xCT-overexpressing FaDu and SCC25 HNSCC cells were used. The ravoxertinib-dependent inhibition of Erk1/2 signaling led to the decrease in erastin efficacy due to the effect on ROS production and the upregulation of ROS scavengers SOD1 and SOD2, resulting in repressed lipid peroxidation. Therefore, it was concluded that the erastin-dependent activation of ferroptosis seems to be a promising approach which can be further developed as an additional strategy for the treatment of HNSCC. As ferroptosis induction via erastin is strongly dependent on the expression of Erk1/2, this MAP kinase can be considered as a predictor for cancer cells' response to erastin.


Assuntos
Ferroptose , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Espécies Reativas de Oxigênio/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética
6.
Sci Rep ; 12(1): 13255, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918485

RESUMO

Mitochondrial dysfunction promotes cancer aggressiveness, metastasis, and resistance to therapy. Similar traits are associated with epithelial mesenchymal transition (EMT). We questioned whether mitochondrial dysfunction induces EMT in head and neck cancer (HNC) cell lines. We induced mitochondrial dysfunction in four HNC cell lines with carbonyl cyanide-4(trifluoromethoxy)phenylhydrazone (FCCP), a mitochondrial electron transport chain uncoupling agent, and oligomycin, a mitochondrial ATP synthase inhibitor. Extracellular flux analyses and expression of the cystine/glutamate antiporter system xc (xCT) served to confirm mitochondrial dysfunction. Expression of the EMT-related transcription factor SNAI2, the mesenchymal marker vimentin and vimentin/cytokeratin double positivity served to detect EMT. In addition, holotomographic microscopy was used to search for morphological features of EMT. Extracellular flux analysis and xCT expression confirmed that FCCP/oligomycin induced mitochondrial dysfunction in all cell lines. Across the four cell lines, mitochondrial dysfunction resulted in an increase in relative SNAI2 expression from 8.5 ± 0.8 to 12.0 ± 1.1 (mean ± SEM; p = 0.007). This effect was predominantly caused by the CAL 27 cell line (increase from 2.2 ± 0.4 to 5.5 ± 1.0; p < 0.001). Similarly, only in CAL 27 cells vimentin expression increased from 2.2 ± 0.5 × 10-3 to 33.2 ± 10.2 × 10-3 (p = 0.002) and vimentin/cytokeratin double positive cells increased from 34.7 ± 5.1 to 67.5 ± 9.8% (p = 0.003), while the other 3 cell lines did not respond with EMT (all p > 0.1). Across all cell lines, FCCP/oligomycin had no effect on EMT characteristics in holotomographic microscopy. Mitochondrial dysfunction induced EMT in 1 of 4 HNC cell lines. Given the heterogeneity of HNC, mitochondrial dysfunction may be sporadically induced by EMT, but EMT does not explain the tumor promoting effects of mitochondrial dysfunction in general.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias de Cabeça e Pescoço , Caderinas/metabolismo , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Linhagem Celular Tumoral , Humanos , Queratinas , Mitocôndrias/metabolismo , Oligomicinas/farmacologia , Vimentina/metabolismo
7.
Theranostics ; 11(16): 7844-7868, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335968

RESUMO

Radiotherapy is one of the curative treatment options for localized prostate cancer (PCa). The curative potential of radiotherapy is mediated by irradiation-induced oxidative stress and DNA damage in tumor cells. However, PCa radiocurability can be impeded by tumor resistance mechanisms and normal tissue toxicity. Metabolic reprogramming is one of the major hallmarks of tumor progression and therapy resistance. Specific metabolic features of PCa might serve as therapeutic targets for tumor radiosensitization and as biomarkers for identifying the patients most likely to respond to radiotherapy. The study aimed to characterize a potential role of glutaminase (GLS)-driven glutamine catabolism as a prognostic biomarker and a therapeutic target for PCa radiosensitization. Methods: We analyzed primary cell cultures and radioresistant (RR) derivatives of the conventional PCa cell lines by gene expression and metabolic assays to identify the molecular traits associated with radiation resistance. Relative radiosensitivity of the cell lines and primary cell cultures were analyzed by 2-D and 3-D clonogenic analyses. Targeting of glutamine (Gln) metabolism was achieved by Gln starvation, gene knockdown, and chemical inhibition. Activation of the DNA damage response (DDR) and autophagy was assessed by gene expression, western blotting, and fluorescence microscopy. Reactive oxygen species (ROS) and the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) were analyzed by fluorescence and luminescence probes, respectively. Cancer stem cell (CSC) properties were investigated by sphere-forming assay, CSC marker analysis, and in vivo limiting dilution assays. Single circulating tumor cells (CTCs) isolated from the blood of PCa patients were analyzed by array comparative genome hybridization. Expression levels of the GLS1 and MYC gene in tumor tissues and amino acid concentrations in blood plasma were correlated to a progression-free survival in PCa patients. Results: Here, we found that radioresistant PCa cells and prostate CSCs have a high glutamine demand. GLS-driven catabolism of glutamine serves not only for energy production but also for the maintenance of the redox state. Consequently, glutamine depletion or inhibition of critical regulators of glutamine utilization, such as GLS and the transcription factor MYC results in PCa radiosensitization. On the contrary, we found that a combination of glutamine metabolism inhibitors with irradiation does not cause toxic effects on nonmalignant prostate cells. Glutamine catabolism contributes to the maintenance of CSCs through regulation of the alpha-ketoglutarate (α-KG)-dependent chromatin-modifying dioxygenase. The lack of glutamine results in the inhibition of CSCs with a high aldehyde dehydrogenase (ALDH) activity, decreases the frequency of the CSC populations in vivo and reduces tumor formation in xenograft mouse models. Moreover, this study shows that activation of the ATG5-mediated autophagy in response to a lack of glutamine is a tumor survival strategy to withstand radiation-mediated cell damage. In combination with autophagy inhibition, the blockade of glutamine metabolism might be a promising strategy for PCa radiosensitization. High blood levels of glutamine in PCa patients significantly correlate with a shorter prostate-specific antigen (PSA) doubling time. Furthermore, high expression of critical regulators of glutamine metabolism, GLS1 and MYC, is significantly associated with a decreased progression-free survival in PCa patients treated with radiotherapy. Conclusions: Our findings demonstrate that GLS-driven glutaminolysis is a prognostic biomarker and therapeutic target for PCa radiosensitization.


Assuntos
Glutamina/metabolismo , Neoplasias da Próstata/metabolismo , Tolerância a Radiação/genética , Animais , Autofagia , Proteína 5 Relacionada à Autofagia/metabolismo , Biomarcadores Farmacológicos , Linhagem Celular Tumoral , Glutaminase/antagonistas & inibidores , Glutaminase/genética , Glutaminase/metabolismo , Humanos , Masculino , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Oxirredução , Proteínas Proto-Oncogênicas c-myc/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Cells ; 10(6)2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204391

RESUMO

During past decades, survival rates in cancer patients have drastically improved due to the successful development of novel, promising chemical compounds and therapeutic schedules [...].


Assuntos
Células-Tronco Neoplásicas , Animais , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
9.
Cell Death Dis ; 12(8): 742, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315857

RESUMO

Cancer stem cells (CSCs) represent a population of cells within the tumor able to drive tumorigenesis and known to be highly resistant to conventional chemotherapy and radiotherapy. In this work, we show a new role for ETV7, a transcriptional repressor member of the ETS family, in promoting breast cancer stem-like cells plasticity and resistance to chemo- and radiotherapy in breast cancer (BC) cells. We observed that MCF7 and T47D BC-derived cells stably over-expressing ETV7 showed reduced sensitivity to the chemotherapeutic drug 5-fluorouracil and to radiotherapy, accompanied by an adaptive proliferative behavior observed in different culture conditions. We further noticed that alteration of ETV7 expression could significantly affect the population of breast CSCs, measured by CD44+/CD24low cell population and mammosphere formation efficiency. By transcriptome profiling, we identified a signature of Interferon-responsive genes significantly repressed in cells over-expressing ETV7, which could be responsible for the increase in the breast CSCs population, as this could be partially reverted by the treatment with IFN-ß. Lastly, we show that the expression of the IFN-responsive genes repressed by ETV7 could have prognostic value in breast cancer, as low expression of these genes was associated with a worse prognosis. Therefore, we propose a novel role for ETV7 in breast cancer stem cells' plasticity and associated resistance to conventional chemotherapy and radiotherapy, which involves the repression of a group of IFN-responsive genes, potentially reversible upon IFN-ß treatment. We, therefore, suggest that an in-depth investigation of this mechanism could lead to novel breast CSCs targeted therapies and to the improvement of combinatorial regimens, possibly involving the therapeutic use of IFN-ß, with the aim of avoiding resistance development and relapse in breast cancer.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , Interferons/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas c-ets/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/radioterapia , Linhagem Celular Tumoral , Plasticidade Celular , Proliferação de Células/efeitos dos fármacos , Feminino , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Prognóstico , Proteínas Proto-Oncogênicas c-ets/genética , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Ensaio Tumoral de Célula-Tronco
10.
Radiol Oncol ; 55(3): 305-316, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33939900

RESUMO

BACKGROUND: Statins, small molecular 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors, are widely used to lower cholesterol levels in lipid-metabolism disorders. Recent preclinical and clinical studies have shown that statins exert beneficial effects in the management of breast cancer by increasing recurrence free survival. Unfortunately, the underlying mechanisms remain elusive. MATERIALS AND METHODS: Simvastatin, one of the most widely prescribed lipophilic statins was utilized to investigate potential radiosensitizing effects and an impact on cell survival and migration in radioresistant breast cancer cell lines. RESULTS: Compared to parental cell counterparts, radioresistant MDA-MB-231-RR, T47D-RR andAu565-RR cells were characterized by upregulation of 3-hydroxy-3-methylglutharyl-coenzyme A reductase (HMGCR) expression accompanied by epithelial-to-mesenchymal transition (EMT) activation. Radioresistant breast cancer cells can be killed by simvastatin via mobilizing of a variety of pathways involved in apoptosis and autophagy. In the presence of simvastatin migratory abilities and vimentin expression is diminished while E-cadherin expression is increased. CONCLUSIONS: The present study suggests that simvastatin may effectively eradicate radioresistant breast carcinoma cells and diminish their mesenchymal phenotypes.


Assuntos
Neoplasias da Mama/patologia , Sobrevivência Celular/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Sinvastatina/farmacologia , Morte Celular Autofágica/efeitos dos fármacos , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Transição Epitelial-Mesenquimal , Feminino , Humanos , Hidroximetilglutaril-CoA Redutases/metabolismo , Regulação para Cima
11.
Cells ; 10(3)2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802627

RESUMO

Epithelial to mesenchymal transition (EMT) is clinically relevant in head and neck squamous cell carcinoma (HNSCC). We hypothesized that EMT-transcription factors (EMT-TFs) and an anti-EMT factor, Krüppel-like-factor-4 (KLF4) regulate EMT in HNSCC. Ten control mucosa and 37 HNSCC tissue samples and three HNSCC cell lines were included for investigation of EMT-TFs, KLF4 and vimentin at mRNA and protein levels. Slug gene expression was significantly higher, whereas, KLF4 gene expression was significantly lower in HNSCC than in normal mucosa. In the majority of HNSCC samples, there was a significant negative correlation between KLF4 and Slug gene expression. Slug gene expression was significantly higher in human papilloma virus (HPV) negative HNSCC, and in tumor samples with irregular p53 gene sequence. Transforming-growth-factor-beta-1 (TGF- ß1) contributed to downregulation of KLF4 and upregulation of Slug. Two possible regulatory pathways could be suggested: (1) EMT-factors induced pathway, where TGF-ß1 induced Slug together with vimentin, and KLF4 was down regulated at the same time; (2) p53 mutations contributed to upregulation and stabilization of Slug, where also KLF4 could co-exist with EMT-TFs.


Assuntos
Neoplasias de Cabeça e Pescoço/genética , Fatores de Transcrição Kruppel-Like/genética , Proteínas Nucleares/genética , Fatores de Transcrição da Família Snail/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Proteína Supressora de Tumor p53/genética , Proteína 1 Relacionada a Twist/genética , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/mortalidade , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Proteínas Nucleares/metabolismo , Transdução de Sinais , Fatores de Transcrição da Família Snail/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Análise de Sobrevida , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Vimentina/genética , Vimentina/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
13.
Front Oncol ; 10: 164, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32154167

RESUMO

Cancer stem cells (CSC) are a distinct subpopulation within a tumor. They are able to self-renew and differentiate and possess a high capability to repair DNA damage, exhibit low levels of reactive oxygen species (ROS), and proliferate slowly. These features render CSC resistant to various therapies, including radiation therapy (RT). Eradication of all CSC is a requirement for an effective antineoplastic treatment and is therefore of utmost importance for the patient. This makes CSC the prime targets for any therapeutic approach. Albeit clinical data is still scarce, experimental data and first clinical trials give hope that CSC-targeted treatment has the potential to improve antineoplastic therapies, especially for tumors that are known to be treatment resistant, such as glioblastoma. In this review, we will discuss CSC in the context of RT, describe known mechanisms of resistance, examine the possibilities of CSC as biomarkers, and discuss possible new treatment approaches.

14.
Radiol Oncol ; 54(1): 103-118, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32061169

RESUMO

Background Metastatic progression of breast cancer is still a challenge in clinical oncology. Therefore, an elucidation how carcinoma cells belonging to different breast cancer subtypes realize their metastatic capacities is needed. The aim of this study was to elucidate a similarity of activated molecular pathways underlying an enhancement of invasiveness of carcinoma cells belonging to different breast carcinoma subtypes. Materials and methods In order to reach this aim, parental and invasive (INV) MDA-MB-231 (triple-negative), T47D (hormone receptor-positive), and Au565 (Her2-positive) breast carcinoma cells were used and their molecular phenotypes were compared using a proteomic approach. Results Independently from breast cancer subtypes, INV cells have demonstrated fibroblast-like morphology accompanied by enhancement of invasive and migratory capacities, increased expression of cancer stem cell markers, and delayed tumor growth in in vivo animal models. However, the global proteomic analysis has highlighted that INV cells were different in protein expressions from the parental cells, and Her2-positive Au565-INV cells showed the most pronounced molecular differences compared to the triple-negative MDA-MB-231-INV and hormone receptor-positive T47D-INV cells. Although Au565-INV breast carcinoma cells possessed the highest number of deregulated proteins, they had the lowest overlapping in proteins commonly expressed in MDA-MB-231-INV and T47D-INV cells. Conclusions We can conclude that hormone receptor-positive cells with increased invasiveness acquire the molecular characteristics of triple-negative breast cancer cells, whereas Her2-positive INV cells specifically changed their own molecular phenotype with very limited partaking in the involved pathways found in the MDA-MB-231-INV and T47D-INV cells. Since hormone receptor-positive invasive cells share their molecular properties with triple-negative breast cancer cells, we assume that these types of metastatic disease can be treated rather equally with an option to add anti-hormonal agents. In contrast, Her2-positive metastasis should be carefully evaluated for more effective therapeutic approaches which are distinct from the triple-negative and hormone-positive metastatic breast cancers.


Assuntos
Neoplasias da Mama/patologia , Invasividade Neoplásica/patologia , Animais , Neoplasias da Mama/química , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Movimento Celular , Feminino , Humanos , Camundongos , Camundongos Nus , Invasividade Neoplásica/genética , Proteínas de Neoplasias/metabolismo , Fenótipo , Proteômica/métodos , Receptor ErbB-2 , Neoplasias de Mama Triplo Negativas/química , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
16.
Semin Cancer Biol ; 60: 148-156, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31521746

RESUMO

Cancer stem cells (CSC) possess abilities generally associated with embryonic or adult stem cells, especially self-renewal and differentiation, but also dormancy and cellular plasticity that allow adaption to new environmental circumstances. These abilities are ideal prerequisites for the successful establishment of metastasis. This review highlights the role of CSCs in every step of the metastatic cascade from cancer cell invasion into blood vessels, survival in the blood stream, attachment and extravasation as well as colonization of the host organ and subsequent establishment of distant macrometastasis.


Assuntos
Neoplasias/metabolismo , Neoplasias/patologia , Células-Tronco Neoplásicas/metabolismo , Microambiente Tumoral , Animais , Plasticidade Celular , Sobrevivência Celular , Progressão da Doença , Suscetibilidade a Doenças , Transição Epitelial-Mesenquimal , Humanos , Neoplasias/etiologia , Células-Tronco Neoplásicas/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo
17.
Curr Drug Targets ; 21(3): 258-278, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31433755

RESUMO

Resistance to chemotherapy and relapse are major hurdles for the effective treatment of cancer. Major reason for this is a small sub population of cancer stem cells (CSCs) and its microenvironment. CSCs are critical driving force for several types of cancer, such as gastric, colon, breast and many more. Hence, for the complete eradication of cancer, it is necessary to develop therapeutic approaches that can specifically target CSCs. Chemical agents that target different proteins involved in CSC signaling pathways, either as single agent or simultaneously targeting two or more proteins have generated promising pre-clinical and clinical results. In the current review article, we have discussed various targets and cellular pathways that can be explored for the effective and complete eradication of CSCs. Some latest developments in the field of design, synthesis and screening of ligands to target cancer stem cells have been summarized in the current review article.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Resistencia a Medicamentos Antineoplásicos , Humanos , Camundongos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Ratos , Nicho de Células-Tronco/efeitos dos fármacos
19.
20.
Mol Cancer ; 18(1): 58, 2019 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-30925921

RESUMO

Therapy resistance can arise within tumor cells because of genetic or phenotypic changes (intrinsic resistance), or it can be the result of an interaction with the tumor microenvironment (extrinsic resistance). Exosomes are membranous vesicles 40 to 100 nm in diameter constitutively released by almost all cell types, and mediate cell-to-cell communication by transferring mRNAs, miRNAs, DNAs and proteins causing extrinsic therapy resistance. They transfer therapy resistance by anti-apoptotic signalling, increased DNA-repair or delivering ABC transporters to drug sensitive cells. As functional mediators of tumor-stroma interaction and of epithelial to mesenchymal transition, exosomes also promote environment-mediated therapy resistance.Exosomes may be used in anticancer therapy exploiting their delivery function. They may effectively transfer anticancer drugs or RNAs in the context of gene therapy reducing immune stimulatory effects of these drugs and hydrophilic qualities facilitating crossing of cell membranes.


Assuntos
Antineoplásicos/farmacologia , Comunicação Celular , Resistencia a Medicamentos Antineoplásicos , Exossomos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Animais , Humanos , Neoplasias/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...