Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MethodsX ; 7: 101153, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33318957

RESUMO

A method of synthesis crystalline yttrium citrate dihydrate was proposed as a result of the transformation of the freshly precipitated basic yttrium carbonate phase in a citric acid solution. The synthesis time was determined on the basis of composition analysis, structure and thermogravimetric studies of samples taken during the synthesis. The research methods used have shown that in the initial stage of the synthesis, the processes of citric acid sorption on basic yttrium carbonate and transformation of amorphous yttrium carbonate hydroxide into crystalline yttrium hydroxide occurs. It is only after 72 h of synthesis that the crystalline yttrium citrate dihydrate is formed.•Synthesis crystalline yttrium citrate dehydrate.•The synthesis time 72 h.•Synthesis components: the freshly precipitated basic yttrium carbonate phase in a citric acid solution.

2.
Nanoscale Res Lett ; 13(1): 96, 2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29651652

RESUMO

The novel organic-inorganic biohybrid composite adsorbent was synthesized based on nanosized silica-titania modified with alginate within the development of effective adsorbent for heavy metal ions. Effects of metal species Cu(II), Zn(II), Cd(II), and Pb(II); concentrations; pH; temperature; and adsorption onto titania-coated silica (ST20) initial or modified by sodium alginate (ST20-ALG) were studied. The equilibrium and kinetic data of metal ions adsorption were analyzed using Langmuir and Freundlich adsorption models and kinetic models: pseudo first order, pseudo second order, intraparticle kinetic model, and Elovich. The maximum sorption capacities observed were higher for the ST20-ALG composite compared to the initial ST20 oxide for all studied metal ions, namely their values for ST20-ALG were 22.44 mg g- 1 for Cu(II) adsorption, 19.95 mg g- 1 for Zn(II), 18.85 mg g- 1 for Cd(II), and 32.49 mg g- 1 for Pb(II). Structure and properties of initial silica-titania ST20 and modified by sodium alginate ST20-ALG adsorbents were analyzed using nitrogen adsorption/desorption isotherms, ATR-FTIR, SEM-EDS, and pHpzc techniques.

3.
Nanoscale Res Lett ; 12(1): 95, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28176287

RESUMO

The paper presents the use of Pyrolox™ containing manganese nano oxides used for the removal of Cu(II), Zn(II), Cd(II), and Pb(II) as well as U(VI) ions. Their concentrations were analyzed using the atomic absorption spectrometer SpectrAA 240 FS (Varian) as well as UV-vis method. For this purpose the static kinetic and equilibrium studies were carried out using the batch technique. The effect of solution pH, shaking time, initial metal ion concentrations, sorbent dosage, and temperature was investigated. The equilibrium data were analyzed using the sorption isotherm models proposed by Freundlich, Langmuir-Freundlich, Temkin, and Dubinin-Radushkevich. The kinetic results showed that the pseudo second order kinetic model was found to correlate the experimental data well. The results indicate that adsorption of Cu(II), Zn(II), Cd(II), and Pb(II) as well as U(VI) ions is strongly dependent on pH. The value of pH 4-7 was optimal adsorption. The time to reach the equilibrium was found to be 24 h, and after this time, the sorption percentage reached about 70%. Kinetics of Cu(II), Zn(II), Cd(II), Pb(II), and U(VI) adsorption on the adsorbent can be described by the pseudo second order rate equation. Nitrogen adsorption/desorption, infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) measurements for adsorbent characterization were performed. Characteristic points of the double layer determined for the studied Pyrolox™ sample in 0.001 mol/dm3 NaCl solution are pHPZC = 4 and pHIEP < 2.

4.
J Colloid Interface Sci ; 434: 28-39, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25168580

RESUMO

Unmodified pyrogenic silica PS300 and partially silylated nanosilica samples at a degree of substitution of surface silanols by trimethylsilyl (TMS) groups Θ(TMS)=27.2% and 37.2% were studied to elucidate features of the interfacial behavior of water adsorbed alone, or co-adsorbed with methane, hydrogen, or trifluoroacetic acid (TFAA). In the aqueous suspension modified PS300 at Θ(TMS)=37.2% forms aggregates of 50-200 nm in size and can bind significant amounts of water (up to ∼5 g/g). Only 0.5 g/g of this water is strongly bound, while the major fraction of water is weakly bound. The presence of surface TMS groups causes the appearance of weakly associated water (WAW) at the interfaces. The adsorption of methane and hydrogen onto TMS-nanosilica with pre-adsorbed water (hydration degree h=0.05 or 0.005 g/g) increases with increasing temperature. In weakly polar CDCl3 medium, interfacial water exists in strongly (SAW, chemical shift δ(H)=4-5 ppm) and weakly (δ(H)=1-2 ppm) associated states, as well as strongly (changes in the Gibbs free energy -ΔG>0.5-0.8 kJ/mol) and weakly (-ΔG<0.5-0.8 kJ/mol) bound states. WAW does not dissolve TFAA but some fraction of SAW bound to TMS-nanosilica surface can dissolve TFAA.

5.
J Radioanal Nucl Chem ; 299(3): 2027-2036, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26224967

RESUMO

The specific adsorption of citric acid ions at hydroxyapatite interface was investigated by the means of radioisotope method (14C) as a function of citric acid ions concentration, NaCl concentration and pH. Application of the hydroxyapatite has become wide in the biomaterial field as the Ca10(OH)2(PO4)6 possess biocompatibility with human hard tissue. Hydroxyapatite was synthesized using three different methods. The physical properties of the resulting powder were characterized by DTA/TG, XRD, AFM and SEM microscopy. Physicochemical qualities characterizing the electrical double layer of the hydroxyapatite/NaCl solution interface were determined. The zeta potential and the adsorption of citric acid molecule were studied as a function of pH. The point of zero charge and the isoelectric point of samples were determined. Electrical double layer parameters of hydroxyapatite/NaCl interface are influenced by a synthesis method. The points pHpzc and pHIEP for sample 1 are pHpzc 7.5 and pHIEP 3; for sample 2 pHpzc 7.05 and pHIEP 3, for smaple 3 pHpzc 6.7 and pHIEP 3. Temperature has weak influence both on pure substance and with citric acid adsorbed, as derivatographic analysis has shown, and characterization of hydroxyapatite structure may be carried out by this thermal analysis. Two phenomena are responsible for citric acid adsorption: phosphate group's replacement at hydroxyapatite surface by citric ions parallel to intraspherical complexes formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...