Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1592, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383472

RESUMO

Magnetic kagome metals are a promising platform to develop unique quantum transport and optical phenomena caused by the interplay between topological electronic bands, strong correlations, and magnetic order. This interplay may result in exotic quasiparticles that describe the coupled electronic and spin excitations on the frustrated kagome lattice. Here, we observe novel elementary magnetic excitations within the ferromagnetic Mn kagome layers in TbMn6Sn6 using inelastic neutron scattering. We observe sharp, collective acoustic magnons and identify flat-band magnons that are localized to a hexagonal plaquette due to the special geometry of the kagome layer. Surprisingly, we observe another type of elementary magnetic excitation; a chiral magnetic quasiparticle that is also localized on a hexagonal plaquette. The short lifetime of localized flat-band and chiral quasiparticles suggest that they are hybrid excitations that decay into electronic states.

2.
Adv Sci (Weinh) ; 11(9): e2305861, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38111327

RESUMO

Anomalous thermal transport of Cs2 NaYbCl6 double-halide perovskite above room temperature is reported and rationalized. Calculations of phonon dispersion relations and scattering rates up to the fourth order in lattice anharmonicity have been conducted to determine their effective dependence on temperature. These findings show that specific phonon group velocities and lifetimes increase if the temperature is raised above 500 K. This, in combination with anharmonicity, provides the microscopic mechanism responsible for the increase in lattice thermal conductivity at high temperatures, contrary to the predictions of phonon transport theories based on solely cubic anharmonicity. The model accurately and quantitatively reproduces the experimental thermal conductivity data as a function of temperature.

3.
Proc Natl Acad Sci U S A ; 120(52): e2310779120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38113259

RESUMO

We present a comprehensive study of the inhomogeneous mixed-valence compound, EuPd3S4, by electrical transport, X-ray diffraction, time-domain 151Eu synchrotron Mössbauer spectroscopy, and X-ray absorption spectroscopy measurements under high pressure. Electrical transport measurements show that the antiferromagnetic ordering temperature, TN, increases rapidly from 2.8 K at ambient pressure to 23.5 K at ~19 GPa and plateaus between ~19 and ~29 GPa after which no anomaly associated with TN is detected. A pressure-induced first-order structural transition from cubic to tetragonal is observed, with a rather broad coexistence region (~20 GPa to ~30 GPa) that corresponds to the TN plateau. Mössbauer spectroscopy measurements show a clear valence transition from approximately 50:50 Eu2+:Eu3+ to fully Eu3+ at ~28 GPa, consistent with the vanishing of the magnetic order at the same pressure. X-ray absorption data show a transition to a fully trivalent state at a similar pressure. Our results show that pressure first greatly enhances TN, most likely via enhanced hybridization between the Eu 4f states and the conduction band, and then, second, causes a structural phase transition that coincides with the conversion of the europium to a fully trivalent state.

4.
Nat Commun ; 14(1): 2658, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160929

RESUMO

Ferromagnetic (FM) order in a two-dimensional kagome layer is predicted to generate a topological Chern insulator without an applied magnetic field. The Chern gap is largest when spin moments point perpendicular to the kagome layer, enabling the capability to switch topological transport properties, such as the quantum anomalous Hall effect, by controlling the spin orientation. In TbMn6Sn6, the uniaxial magnetic anisotropy of the Tb3+ ion is effective at generating the Chern state within the FM Mn kagome layers while a spin-reorientation (SR) transition to easy-plane order above TSR = 310 K provides a mechanism for switching. Here, we use inelastic neutron scattering to provide key insights into the fundamental nature of the SR transition. The observation of two Tb excitations, which are split by the magnetic anisotropy energy, indicates an effective two-state orbital character for the Tb ion, with a uniaxial ground state and an isotropic excited state. The simultaneous observation of both modes below TSR confirms that orbital fluctuations are slow on magnetic and electronic time scales < ps and act as a spatially-random orbital alloy. A thermally-driven critical concentration of isotropic Tb ions triggers the SR transition.

5.
J Am Chem Soc ; 144(16): 7402-7413, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35420804

RESUMO

Converting waste heat into useful electricity using solid-state thermoelectrics has a potential for enormous global energy savings. Lead chalcogenides are among the most prominent thermoelectric materials, whose performance decreases with an increase in chalcogen amounts (e.g., PbTe > PbSe > PbS). Herein, we demonstrate the simultaneous optimization of the electrical and thermal transport properties of PbS-based compounds by alloying with GeS. The addition of GeS triggers a complex cascade of beneficial events as follows: Ge2+ substitution in Pb2+ and discordant off-center behavior; formation of Pb5Ge5S12 as stable second-phase inclusions through valence disproportionation of Ge2+ to Ge0 and Ge4+. PbS and Pb5Ge5S12 exhibit good conduction band energy alignment that preserves the high electron mobility; the formation of Pb5Ge5S12 increases the electron carrier concentration by introducing S vacancies. Sb doping as the electron donor produces a large power factor and low lattice thermal conductivity (κlat) of ∼0.61 W m-1 K-1. The highest performance was obtained for the 14% GeS-alloyed samples, which exhibited an increased room-temperature electron mobility of ∼121 cm2 V-1 s-1 for 3 × 1019 cm-3 carrier density and a ZT of 1.32 at 923 K. This is ∼55% greater than the corresponding Sb-doped PbS sample and is one of the highest reported for the n-type PbS system. Moreover, the average ZT (ZTavg) of ∼0.76 from 400 to 923 K is the highest for PbS-based systems.

6.
Inorg Chem ; 60(24): 19345-19355, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34889600

RESUMO

Canfieldite, Ag8SnS6, is a semiconducting mineral notable for its high ionic conductivity, photosensitivity, and low thermal conductivity. We report the solution growth of large single crystals of Ag8SnS6 of mass up to 1 g from a ternary Ag-Sn-S melt. On cooling from high temperature, Ag8SnS6 undergoes a known cubic (F4̅3m) to orthorhombic (Pna21) phase transition at ≈460 K. By studying the magnetization and thermal expansion between 5-300 K, we discover a second structural transition at ≈120 K. Single crystal X-ray diffraction reveals the low-temperature phase adopts a different orthorhombic structure with space group Pmn21 (a = 7.662 9(5) Å, b = 7.539 6(5) Å, c = 10.630 0(5) Å, Z = 2 at 90 K) that is isostructural to the room-temperature forms of the related Se-based compounds Ag8SnSe6 and Ag8GeSe6. The 120 K transition is first-order and has a large thermal hysteresis. On the basis of the magnetization and thermal expansion data, the room-temperature polymorph can be kinetically arrested into a metastable state by rapidly cooling to temperatures below 40 K. We last compare the room- and low-temperature forms of Ag8SnS6 with its argyrodite analogues, Ag8TQ6 (T = Si, Ge, Sn; Q = S, Se), and identify a trend relating the preferred structures to the unit cell volume, suggesting smaller phase volume favors the Pna21 arrangement. We support this picture by showing that the transition to the Pmn21 phase is avoided in Ge alloyed Ag8Sn1-xGexS6 samples as well as in pure Ag8GeS6.

7.
Chem Soc Rev ; 50(16): 9022-9054, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34137396

RESUMO

Thermoelectric energy conversion is an all solid-state technology that relies on exceptional semiconductor materials that are generally optimized through sophisticated strategies involving the engineering of defects in their structure. In this review, we summarize the recent advances of defect engineering to improve the thermoelectric (TE) performance and mechanical properties of inorganic materials. First, we introduce the various types of defects categorized by dimensionality, i.e. point defects (vacancies, interstitials, and antisites), dislocations, planar defects (twin boundaries, stacking faults and grain boundaries), and volume defects (precipitation and voids). Next, we discuss the advanced methods for characterizing defects in TE materials. Subsequently, we elaborate on the influences of defect engineering on the electrical and thermal transport properties as well as mechanical performance of TE materials. In the end, we discuss the outlook for the future development of defect engineering to further advance the TE field.

8.
J Am Chem Soc ; 143(15): 5978-5989, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33847500

RESUMO

Owing to the diversity of composition and excellent transport properties, the ternary I-III-VI2 type diamond-like chalcopyrite compounds are attractive functional semiconductors, including as thermoelectric materials. In this family, CuInTe2 and CuGaTe2 are well investigated and achieve maximum ZT values of ∼1.4 at 950 K and an average ZT of 0.43. However, both compounds have poor electrical conductivity at low temperature, resulting in low ZT below 450 K. In this work, we have greatly improved the thermoelectric performance in the quinary diamondoid compound (Cu0.8Ag0.2)(In0.2Ga0.8)Te2 by understanding and controlling the effects of different constituent elements on the thermoelectric transport properties. Our combined theoretical and experimental effort indicates that Ga in the In site of the lattice decreases the carrier effective mass and improves the electrical conductivity and power factor of Cu0.8Ag0.2In1-xGaxTe2. Furthermore, Ag in the Cu site strongly suppresses the heat transport via the enhanced acoustic phonon-optical phonon coupling effects, leading to the ultralow thermal conductivity of ∼0.49 W m-1 K-1 at 850 K in Cu0.8Ag0.2In0.2Ga0.8Te2. Defect formation energy calculations suggest intrinsic Cu vacancies introduce defect levels that are important to the temperature-dependent hole density and electrical conductivity. Therefore, we introduced extra Cu vacancies to optimize the hole carrier density and improve the power factor of Cu0.8Ag0.2In0.2Ga0.8Te2. As a result, a maximum ZT of ∼1.5 at 850 K and an average ZT of 0.78 in the temperature range of 400-850 K are obtained, which is among the highest in the diamond-like compound family.

9.
J Am Chem Soc ; 142(35): 15187-15198, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32786784

RESUMO

We investigate the structural and physical properties of the AgSnmSbSem+2 system with m = 1-20 (i.e., SnSe matrix and ∼5-50% AgSbSe2) from atomic, nano, and macro length scales. We find the 50:50 composition, with m = 1 (i.e., AgSnSbSe3), forms a stable cation-disordered cubic rock-salt p-type semiconductor with a special multi-peak electronic valence band structure. AgSnSbSe3 has an intrinsically low lattice thermal conductivity of ∼0.47 W m-1 K-1 at 673 K owing to the synergy of cation disorder, phonon anharmonicity, low phonon velocity, and low-frequency optical modes. Furthermore, Te alloying on Se sites creates a quinary high-entropy NaCl-type solid solution AgSnSbSe3-xTex with randomly disordered cations and anions. The extra point defects and lattice dislocations lead to glass-like lattice thermal conductivities of ∼0.32 W m-1 K-1 at 723 K and higher hole carrier concentration than AgSnSbSe3. Concurrently, the Te alloying promotes greater convergence of the multiple valence band maxima in AgSnSbSe1.5Te1.5, the composition with the highest configurational entropy. Facilitated by these favorable modifications, we achieve a high average power factor of ∼9.54 µW cm-1 K-2 (400-773 K), a peak thermoelectric figure of merit ZT of 1.14 at 723 K, and a high average ZT of ∼1.0 over a wide temperature range of 400-773 K in AgSnSbSe1.5Te1.5.

10.
J Am Chem Soc ; 142(28): 12524-12535, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32628474

RESUMO

Defect chemistry is critical to designing high performance thermoelectric materials. In SnTe, the naturally large density of cation vacancies results in excessive hole doping and frustrates the ability to control the thermoelectric properties. Yet, recent work also associates the vacancies with suppressed sound velocities and low lattice thermal conductivity, underscoring the need to understand the interplay between alloying, vacancies, and the transport properties of SnTe. Here, we report solid solutions of SnTe with NaSbTe2 and NaBiTe2 (NaSnmSbTem+2 and NaSnmBiTem+2, respectively) and focus on the impact of the ternary alloys on the cation vacancies and thermoelectric properties. We find introduction of NaSbTe2, but not NaBiTe2, into SnTe nearly doubles the natural concentration of Sn vacancies. Furthermore, DFT calculations suggest that both NaSbTe2 and NaBiTe2 facilitate valence band convergence and simultaneously narrow the band gap. These effects improve the power factors but also make the alloys more prone to detrimental bipolar diffusion. Indeed, the performance of NaSnmBiTem+2 is limited by strong bipolar transport and only exhibits modest maximum ZTs ≈ 0.85 at 900 K. In NaSnmSbTem+2 however, the doubled vacancy concentration raises the charge carrier density and suppresses bipolar diffusion, resulting in superior power factors than those of the Bi-containing analogues. Lastly, NaSbTe2 incorporation lowers the sound velocity of SnTe to give glasslike lattice thermal conductivities. Facilitated by the favorable impacts of band convergence, vacancy-augmented hole concentration, and lattice softening, NaSnmSbTem+2 reaches high ZT ≈ 1.2 at 800-900 K and a competitive average ZTavg of 0.7 over 300-873 K. The difference in ZT between two chemically similar compounds underscores the importance of intrinsic defects in engineering high-performance thermoelectrics.

11.
J Am Chem Soc ; 142(20): 9553-9563, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32320237

RESUMO

Halide perovskites are anticipated to impact next generation high performance solar cells because of their extraordinary charge transport and optoelectronic properties. However, their thermal transport behavior has received limited attention. In this work, we studied the thermal transport and thermoelectric properties of the CsSnBr3-xIx perovskites. We find a strong correlation between lattice dynamics and an ultralow thermal conductivity for series CsSnBr3-xIx reaching 0.32 Wm-1K-1 at 550 K. The CsSnBr3-xIx also possess a decent Seebeck coefficient and controllable electrical transport properties. The crystallography data and theoretical calculations suggest the Cs atom deviates from its ideal cuboctahedral geometry imposed by the perovskite cage and behaves as a heavy atom rattling oscillator. This off-center tendency of Cs, together with the distortion of SnX6 (X = Br or I) octahedra, produces a highly dynamic and disordered structure in CsSnBr3-xIx, which gives rise to a very low Debye temperature and phonon velocity. Moreover, the low temperature heat capacity data suggests strong coupling between the low frequency optical phonons and heat carrying acoustical phonons. This induces strong phonon resonance scattering that induces the ultralow lattice thermal conductivity of CsSnBr3-xIx.

12.
J Am Chem Soc ; 140(22): 7021-7031, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29799729

RESUMO

Thermoelectric devices directly convert heat into electrical energy and are highly desired for emerging applications in waste heat recovery. Currently, PbTe based compounds are the leading thermoelectric materials in the intermediate temperature regime (∼800 K); however, integration into commercial devices has been limited. This is largely because the performance of PbTe, which is maximized ∼900 K, is too low over the temperatures of interest for most potential commercial applications (generally under 600 K). Improving the low temperature performance of PbTe based materials is therefore critical to achieve usage outside of existing niche applications. Here, we provide an in-depth study of the cubic NaPb mSbTe m+2 system of compounds ( m = 1-20) and report that it is an excellent class of low- to medium-temperature thermoelectrics when m = 10-20. We show that the as-cast polycrystalline ingots exhibit degenerate p-type conduction and high maximum ZTs of 1.2-1.4 at 650 K when m = 6-20. Because the ingots are found to be extremely brittle, we utilize spark plasma sintering (SPS) to prepare more mechanically robust samples, and surprisingly, find that SPS results in an undesired change in charge transport toward n-type behavior. We show this unanticipated transition from p-type behavior as ingots to n-type after SPS is due to dissolution of secondary phases that are present in the ingots into the primary matrix during the SPS process, resulting in a transformation from an inhomogeneous state to a solid solution without any observable evidence of nanoscale precipitation. This is in sharp contrast to the seemingly similar AgPbmSbTe m+2 (LAST) system, which is heavily nanostructured. The SPSed NaPb mSbTe m+2 is doped p-type by tuning the cation stoichiometry, i.e., Na1+ xPb m- xSb1- yTe m+2. The optimized compounds have very low lattice thermal conductivities of 1.1-0.55 W·m-1·K-1 over 300-650 K, which enhances the low-intermediate temperature performance and gives rise to maximum ZT values up to 1.6 at 673 K as well as an excellent ZTavg of 1.1 over 323-673 K for m = 10, 20, making Na1+ xPb m- xSb1- yTe m+2 among the highest performing PbTe-based thermoelectrics under 650 K.

13.
Inorg Chem ; 57(4): 2260-2268, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29411610

RESUMO

The field of mineralogy represents an area of untapped potential for the synthetic chemist, as there are numerous structure types that can be utilized to form analogues of mineral structures with useful optoelectronic properties. In this work, we describe the synthesis and characterization of two novel quaternary sulfides A1+xSn2-xBi5+xS10 (A = Li+, Na+). Though not natural minerals themselves, both compounds adopt the pavonite structure, which crystallizes in the C2/m space group and consists of two connected, alternating defect rock-salt slabs of varying thicknesses to create a three-dimensional lattice. Despite their commonalities in structure, their crystallography is noticeably different, as both structures have a heavy degree of site occupancy disorder that affects the actual positions of the atoms. The differences in site occupancy alter their electronic structures, with band gap values of 0.31(2) eV and 0.07(2) eV for the lithium and sodium analogues, respectively. LiSn2Bi5S10 exhibits ultralow thermal conductivity of 0.62 W m-1 K-1 at 723 K, and this result is corroborated by phonon dispersion calculations. This structure type is a promising host candidate for future thermoelectric materials investigation, as these materials have narrow band gaps and intrinsically low thermal conductivities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...