Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Brain ; 146(3): 858-864, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36417180

RESUMO

Pyruvate is an essential metabolite produced by glycolysis in the cytosol and must be transported across the inner mitochondrial membrane into the mitochondrial matrix, where it is oxidized to fuel mitochondrial respiration. Pyruvate import is performed by the mitochondrial pyruvate carrier (MPC), a hetero-oligomeric complex composed by interdependent subunits MPC1 and MPC2. Pathogenic variants in the MPC1 gene disrupt mitochondrial pyruvate uptake and oxidation and cause autosomal-recessive early-onset neurological dysfunction in humans. The present work describes the first pathogenic variants in MPC2 associated with human disease in four patients from two unrelated families. In the first family, patients presented with antenatal developmental abnormalities and harboured a homozygous c.148T>C (p.Trp50Arg) variant. In the second family, patients that presented with infantile encephalopathy carried a missense c.2T>G (p.Met1?) variant disrupting the initiation codon. Patient-derived skin fibroblasts exhibit decreased pyruvate-driven oxygen consumption rates with normal activities of the pyruvate dehydrogenase complex and mitochondrial respiratory chain and no defects in mitochondrial content or morphology. Re-expression of wild-type MPC2 restored pyruvate-dependent respiration rates in patient-derived fibroblasts. The discovery of pathogenic variants in MPC2 therefore broadens the clinical and genetic landscape associated with inborn errors in pyruvate metabolism.


Assuntos
Mitocôndrias , Proteínas de Transporte da Membrana Mitocondrial , Humanos , Feminino , Gravidez , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Transporte Biológico , Ácido Pirúvico/metabolismo
2.
Afr J Reprod Health ; 25(1): 67-75, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34077112

RESUMO

Polymorphisms in the have been speculated to be associated with male infertility. The main objective of our study was to CAG repeat polymorphism in POLG1 gene and male mitochondrial DNA polymerase gamma (POLG) assess the possible association of infertility in Algerian population. Genomic DNA from 89 infertile men and 84 controls was extracted using salting-out method. CAG repeat polymorphism was analyzed by the automated direct sequencing protocol. Statistical analysis was performed by Epi-info(r) (v6.0) software. A significant association with male infertility was found for CAG repeat polymorphism in heterozygous genotypes (10/≠10 vs 10/10: OR = 2.00 [0.99 - 4.05], p=0.03; "infertile vs control groups"; 10/≠10 vs 10/10: OR = 3.75[1.20-11.96], p=0.01 "oligoasthenoteratospermic group"). ALso, the results showed a significant association between the mordib allele (≠10) and male infertility (2.07 [01.07 - 04.02], p=0.01). Our results showed that POLG1 CAG repeat polymorphism might be a risk factor for male infertility in Algerian population. Investigations with larger sample sizes and representative population-based cases and matched controls are needed to validate our results.


Assuntos
DNA Polimerase gama/genética , Infertilidade Masculina/genética , Complexo Mediador/genética , Adulto , Argélia , Astenozoospermia , Azoospermia , Estudos de Casos e Controles , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias , Mutação , Técnicas de Amplificação de Ácido Nucleico , Oligospermia , Análise de Sequência de DNA
3.
Mol Genet Metab ; 132(1): 38-43, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33309011

RESUMO

Adenosine kinase (ADK) deficiency is characterized by liver disease, dysmorphic features, epilepsy and developmental delay. This defect disrupts the adenosine/AMP futile cycle and interferes with the upstream methionine cycle. We report the clinical, histological and biochemical courses of three ADK children carrying two new mutations and presenting with neonatal cholestasis and neurological disorders. One of them died of liver failure whereas the other two recovered from their liver damage. As the phenotype was consistent with a mitochondrial disorder, we studied liver mitochondrial respiratory chain activities in two patients and revealed a combined defect of several complexes. In addition, we retrospectively analyzed methionine plasma concentration, a hallmark of ADK deficiency, in a cohort of children and showed that methionine level in patients with ADK deficiency was strongly increased compared with patients with other liver diseases. ADK deficiency is a cause of neonatal or early infantile liver disease that may mimic primary mitochondrial disorders. In this context, an elevation of methionine plasma levels over twice the upper limit should not be considered as a nonspecific finding. ADK deficiency induced-liver dysfunction is most often transient, but could be life-threatening.


Assuntos
Adenosina Quinase/genética , Erros Inatos do Metabolismo dos Aminoácidos/genética , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Glicina N-Metiltransferase/deficiência , Adenosina/genética , Adenosina/metabolismo , Adenosina Quinase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/complicações , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Criança , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/patologia , Epilepsia/complicações , Epilepsia/patologia , Feminino , Predisposição Genética para Doença , Glicina N-Metiltransferase/genética , Humanos , Lactente , Recém-Nascido , Hepatopatias/complicações , Hepatopatias/genética , Hepatopatias/patologia , Masculino , Estudos Retrospectivos
4.
Mol Genet Metab ; 131(1-2): 107-113, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32933822

RESUMO

Mitochondrial respiratory chain integrity depends on a number of proteins encoded by nuclear and mitochondrial genomes. Mutations of such factors can result in isolated or combined respiratory chain deficits, some of which can induce abnormal morphology of the mitochondrial network or accumulation of intermediary metabolites. Consequently, affected patients are clinically heterogeneous, presenting with central nervous system, muscular, or neurodegenerative disorders. ATAD3A is a nuclear-encoded ATPase protein of the AAA+ family and has been localized to the inner mitochondrial membrane. Recently reported mutations or large deletions in the ATDA3A gene in patients have been shown to induce altered mitochondrial structure and function and abnormal cholesterol metabolism in a recessive or dominant manner. Here, we report two siblings presenting axonal sensory-motor neuropathy associated with neonatal cataract. Genetic analyses identified two novel mutations in ATAD3A; a point mutation and an intronic 15 bp deletion affecting splicing and leading to exon skipping. Biochemical analysis in patient cells and tissues showed abnormal function of the mitochondrial respiratory chain in muscle and abnormal mitochondrial cristae structure. These new cases underline the large spectrum of biochemical and clinical presentations of ATAD3A deficiency and the different modes of inheritance, making it an atypical mitochondrial disorder.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Transporte de Elétrons/genética , Proteínas de Membrana/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Mitocôndrias/patologia , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/patologia , Mutação/genética , Córtex Sensório-Motor/patologia , Irmãos
5.
Hum Mutat ; 41(2): 397-402, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31680380

RESUMO

Pathogenic GFM1 variants have been linked to neurological phenotypes with or without liver involvement, but only a few cases have been reported in the literature. Here, we report clinical, biochemical, and neuroimaging findings from nine unrelated children carrying GFM1 variants, 10 of which were not previously reported. All patients presented with neurological involvement-mainly axial hypotonia and dystonia during the neonatal period-with five diagnosed with West syndrome; two children had liver involvement with cytolysis episodes or hepatic failure. While two patients died in infancy, six exhibited a stable clinical course. Brain magnetic resonance imaging showed the involvement of basal ganglia, brainstem, and periventricular white matter. Mutant EFG1 and OXPHOS proteins were decreased in patient's fibroblasts consistent with impaired mitochondrial translation. Thus, we expand the genetic spectrum of GFM1-linked disease and provide detailed clinical profiles of the patients that will improve the diagnostic success for other patients carrying GFM1 mutations.


Assuntos
Fibroblastos/metabolismo , Regulação da Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Proteínas Mitocondriais/genética , Mutação , Neuroimagem , Fator G para Elongação de Peptídeos/genética , Alelos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Bases de Dados Genéticas , Feminino , Estudos de Associação Genética/métodos , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Mitocôndrias/genética , Neuroimagem/métodos , Linhagem
8.
Neuropharmacology ; 145(Pt B): 283-291, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29885423

RESUMO

Progesterone has been shown to be cerebroprotective in different experimental models of brain injuries and neurodegenerative diseases. The preclinical data provided great hope for its use in humans. The failure of Phase 3 clinical trials to demonstrate the cerebroprotective efficiency of progesterone in traumatic brain injury (TBI) patients emphasizes that different aspects of the design of both experimental and clinical studies should be reviewed and refined. One important aspect to consider is to test different routes of delivery of therapeutic agents. Several studies have shown that the intranasal delivery of drugs could be used in different experimental models of central nervous system diseases. In this review, we will summarize the pharmacokinetic characteristics and practical advantages of intranasal delivery of progesterone. A special emphasis will be placed on describing and discussing our recent findings showing that intranasal delivery of progesterone after transient focal cerebral ischemia: 1) improved motor functions; 2) reduced infarct volume, neuronal loss, blood brain barrier disruption; and 3) reduced brain mitochondrial dysfunctions. Our data suggest that intranasal delivery of progesterone is a potential efficient, safe and non-stressful mode of administration that warrants evaluation for cerebroprotection in patients with brain injuries. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".


Assuntos
Lesões Encefálicas/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Progesterona/administração & dosagem , Administração Intranasal , Animais , Humanos , Fármacos Neuroprotetores/farmacocinética , Progesterona/farmacocinética
9.
Cell Mol Neurobiol ; 39(4): 551-568, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30302630

RESUMO

Both sex and steroid hormones are important to consider in human ischemic stroke and its experimental models. Stroke initiates a cascade of changes that lead to neural cell death, but also activates endogenous protective processes that counter the deleterious consequences of ischemia. Steroids may be part of these cerebroprotective processes. One option to provide cerebroprotection is to reinforce these intrinsic protective mechanisms. In the current review, we first summarize studies describing sex differences and the influence of steroid hormones in stroke. We then present and discuss our recent results concerning differential changes in endogenous steroid levels in the brains of male and female mice and the importance of progesterone receptors (PR) during the early phase after stroke. In the third part, we give an overview of experimental studies, including ours, that provide evidence for the pleiotropic beneficial effects of progesterone and its promising cerebroprotective potential in stroke. We also highlight the key role of PR signaling as well as potential additional mechanisms by which progesterone may provide cerebroprotection.


Assuntos
Progesterona/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Feminino , Humanos , Masculino , Neuroproteção , Receptores de Progesterona/metabolismo , Caracteres Sexuais , Transdução de Sinais
10.
Mol Genet Metab ; 123(4): 433-440, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29433791

RESUMO

BACKGROUND AND OBJECTIVES: Patients affected with methylmalonic acidemia (MMA) and propionic acidemia (PA) exhibit diverse long-term complications and poor outcome. Liver disease is not a reported complication. The aim of this study was to characterize and extensively evaluate long-term liver involvement in MMA and PA patients. PATIENTS AND METHODS: We first describe four patients who had severe liver involvement during the course of their disease. Histology showed fibrosis and/or cirrhosis in 3 patients. Such liver involvement led us to retrospectively collect liver (clinical, laboratory and ultrasound) data of MMA (N = 12) or PA patients (N = 16) from 2003 to 2016. RESULTS: Alpha-fetoprotein (αFP) levels were increased in 8/16 and 3/12 PA and MMA patients, respectively, and tended to increase with age. Moderate and recurrent increase of GGT was observed in 4/16 PA patients and 4/12 MMA patients. Abnormal liver ultrasound with either hepatomegaly and/or hyperechoic liver was observed in 7/9 PA patients and 3/9 MMA patients. CONCLUSIONS: These data demonstrate that approximately half of the patients affected by MMA or PA had signs of liver abnormalities. The increase of αFP with age suggests progressive toxicity, which might be due to the metabolites accumulated in PA and MMA. These metabolites (e.g., methylmalonic acid and propionic acid derivatives) have previously been reported to have mitochondrial toxicity; this toxicity is confirmed by the results of histological and biochemical mitochondrial analyses of the liver in two of our MMA patients. In contrast to the moderate clinical, laboratory or ultrasound expression, severe pathological expression was found for three of the 4 patients who underwent liver biopsy, ranging from fibrosis to cirrhosis. These results emphasize the need for detailed liver function evaluation in organic aciduria patients, including liver biopsy when liver disease is suspected. TAKE HOME MESSAGE: MMA and PA patients exhibit long-term liver abnormalities.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/complicações , Hepatopatias/etiologia , Hepatopatias/patologia , Acidemia Propiônica/complicações , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Seguimentos , Humanos , Masculino , Prognóstico , Estudos Retrospectivos , Adulto Jovem
11.
Mod Pathol ; 31(6): 974-983, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29410489

RESUMO

Hereditary leiomyomatosis and renal cell carcinoma syndrome is characterized by an increased risk of agressive renal cell carcinoma, often of type 2 papillary histology, and is caused by FH germline mutations. A prominent eosinophilic macronucleolus with a perinucleolar clear halo is distinctive of hereditary leiomyomatosis and renal cell carcinoma syndrome-associated renal cell carcinoma according to the 2012 ISUP and 2016 WHO kidney tumor classification. From an immunohistochemistry perspective, tumors are often FH-negative and S-(2-succino)-cysteine (2SC) positive. We performed a pathology review of 24 renal tumors in 23 FH mutation carriers, and compared them to 12 type 2 papillary renal cell carcinomas from FH wild-type patients. Prominent eosinophilic nucleoli with perinucleolar halos were present in almost all FH-deficient renal cell carcinomas (23/24). Unexpectedly, they were also present in 58% of type 2 papillary renal cell carcinomas from wild-type patients. Renal cell carcinoma in mutation carriers displayed a complex architecture with multiple patterns, typically papillary, tubulopapillary, and tubulocystic, but also sarcomatoid and rhabdoid. Such pattern diversity was not seen in non-carriers. FH/2SC immunohistochemistry was informative as all hereditary leiomyomatosis and renal cell carcinoma-associated renal cell carcinomas were either FH- or 2SC+. For FH and 2SC immunohistochemistries taken separately, sensitivity of negative anti-FH immunohistochemistry was 87.5% and specificity was 100%. For positive anti-2SC immunohistochemistry, sensitivity, and specificity were 91.7% and 91.7%, respectively. All FH wild-type renal cell carcinoma were FH-positive, and all but one were 2SC-negative. In conclusion, multiplicity of architectural patterns, rhabdoid/sarcomatoid components and combined FH/2SC staining, but not prominent eosinophilic nucleoli with perinucleolar halos, differentiate hereditary leiomyomatosis and renal cell carcinoma-associated renal cell carcinoma from type 2 papillary renal cell carcinoma with efficient FH gene. Our findings are crucial in identifying who should be referred to Cancer Genetics clinics for genetic counseling and testing.


Assuntos
Carcinoma de Células Renais/diagnóstico , Fumarato Hidratase/metabolismo , Neoplasias Renais/diagnóstico , Leiomiomatose/diagnóstico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Diagnóstico Diferencial , Fumarato Hidratase/genética , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Leiomiomatose/genética , Leiomiomatose/metabolismo , Leiomiomatose/patologia
12.
J Inherit Metab Dis ; 41(1): 129-139, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28924877

RESUMO

BACKGROUND AND AIM: To improve the diagnostic work-up of patients with diverse neurological diseases, we have elaborated specific clinical and CSF neurotransmitter patterns. METHODS: Neurotransmitter determinations in CSF from 1200 patients revealed abnormal values in 228 (19%) cases. In 54/228 (24%) patients, a final diagnosis was identified. RESULTS: We have reported primary (30/54, 56%) and secondary (24/54, 44%) monoamine neurotransmitter disorders. For primary deficiencies, the most frequently mutated gene was DDC (n = 9), and the others included PAH with neuropsychiatric features (n = 4), PTS (n = 5), QDPR (n = 3), SR (n = 1), and TH (n = 1). We have also identified mutations in SLC6A3, FOXG1 (n = 1 of each), MTHFR (n = 3), FOLR1, and MTHFD (n = 1 of each), for dopamine transporter, neuronal development, and folate metabolism disorders, respectively. For secondary deficiencies, we have identified POLG (n = 3), ACSF3 (n = 1), NFU1, and SDHD (n = 1 of each), playing a role in mitochondrial function. Other mutated genes included: ADAR, RNASEH2B, RNASET2, SLC7A2-IT1 A/B lncRNA, and EXOSC3 involved in nuclear and cytoplasmic metabolism; RanBP2 and CASK implicated in post-traductional and scaffolding modifications; SLC6A19 regulating amino acid transport; MTM1, KCNQ2 (n = 2), and ATP1A3 playing a role in nerve cell electrophysiological state. Chromosome abnormalities, del(8)(p23)/dup(12) (p23) (n = 1), del(6)(q21) (n = 1), dup(17)(p13.3) (n = 1), and non-genetic etiologies (n = 3) were also identified. CONCLUSION: We have classified the final 54 diagnoses in 11 distinctive biochemical profiles and described them through 20 clinical features. To identify the specific molecular cause of abnormal NT profiles, (targeted) genomics might be used, to improve diagnosis and allow early treatment of complex and rare neurological genetic diseases.


Assuntos
Monoaminas Biogênicas/líquido cefalorraquidiano , Encefalopatias Metabólicas Congênitas/diagnóstico , Análise Mutacional de DNA , Perfilação da Expressão Gênica , Biomarcadores/líquido cefalorraquidiano , Encefalopatias Metabólicas Congênitas/líquido cefalorraquidiano , Encefalopatias Metabólicas Congênitas/genética , Encefalopatias Metabólicas Congênitas/terapia , Marcadores Genéticos , Predisposição Genética para Doença , Humanos , Mutação , Fenótipo , Valor Preditivo dos Testes , Prognóstico , Sistema de Registros , Estudos Retrospectivos
13.
Front Aging Neurosci ; 9: 406, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29270123

RESUMO

The mitochondria have a fundamental role in both cellular energy supply and oxidative stress regulation and are target of the effects of sex steroids, particularly the neuroprotective ones. Aging is associated with a decline in the levels of different steroid hormones, and this decrease may underline some neural dysfunctions. Besides, modifications in mitochondrial functions associated with aging processes are also well documented. In this review, we will discuss studies that describe the modifications of brain mitochondrial function and of steroid levels associated with physiological aging and with neurodegenerative diseases. A special emphasis will be placed on describing and discussing our recent findings concerning the concomitant study of mitochondrial function (oxidative phosphorylation, oxidative stress) and brain steroid levels in both young (3-month-old) and aged (20-month-old) male and female mice.

14.
Metab Brain Dis ; 32(6): 2149-2154, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28868593

RESUMO

Sengers syndrome is a rare autosomal recessive metabolic disorder caused by lack of acylglycerol kinase due to mutations in the AGK gene. It is characterized by congenital cataract, hypertrophic cardiomyopathy, myopathy and lactic acidosis. Two clinical forms have been described: a severe neonatal form, and a more benign form displaying exercise intolerance. We describe two siblings with congenital cataract, cardiomyopathy, hypotonia, intellectual disability and lactic acidosis. Whole exome sequencing revealed a homozygous c.1035dup mutation in the two siblings, supporting a diagnosis of Sengers syndrome. Our patients presented an intermediate form with intellectual deficiency, an unusual feature in Sengers syndrome. This permitted a prenatal diagnosis for a following pregnancy.


Assuntos
Cardiomiopatias/genética , Catarata/genética , Deficiência Intelectual/genética , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Criança , Pré-Escolar , Humanos , Masculino , Fenótipo , Irmãos
15.
PLoS Genet ; 13(4): e1006597, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28376083

RESUMO

Neuropathies are neurodegenerative diseases affecting humans and other mammals. Many genetic causes have been identified so far, including mutations of genes encoding proteins involved in mitochondrial dynamics. Recently, the "Turning calves syndrome", a novel sensorimotor polyneuropathy was described in the French Rouge-des-Prés cattle breed. In the present study, we determined that this hereditary disease resulted from a single nucleotide substitution in SLC25A46, a gene encoding a protein of the mitochondrial carrier family. This mutation caused an apparent damaging amino-acid substitution. To better understand the function of this protein, we knocked out the Slc25a46 gene in a mouse model. This alteration affected not only the nervous system but also altered general metabolism, resulting in premature mortality. Based on optic microscopy examination, electron microscopy and on biochemical, metabolic and proteomic analyses, we showed that the Slc25a46 disruption caused a fusion/fission imbalance and an abnormal mitochondrial architecture that disturbed mitochondrial metabolism. These data extended the range of phenotypes associated with Slc25a46 dysfunction. Moreover, this Slc25a46 knock-out mouse model should be useful to further elucidate the role of SLC25A46 in mitochondrial dynamics.


Assuntos
Dinâmica Mitocondrial/genética , Proteínas Mitocondriais/genética , Proteínas de Transporte de Fosfato/genética , Polineuropatias/genética , Proteômica , Substituição de Aminoácidos/genética , Animais , Bovinos , Humanos , Camundongos , Mitocôndrias/genética , Mitocôndrias/patologia , Mutação , Fenótipo , Polineuropatias/patologia , Polineuropatias/veterinária
16.
J Hum Genet ; 62(7): 729-731, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28275242

RESUMO

An isolated mitochondrial complex III (CIII) defect constitutes a rare cause of mitochondrial disorder. Here we present the second case involving UQCRC2 gene, which encodes core protein 2, one of the 11 structural subunits of CIII. The patient has the same mutation (c.547C>T; p.Arg183Trp) as the first case and presented with neonatal lactic acidosis, hypoglycemia and severe episodes of liver failure. Our study expands the few reported cases of CIII deficiency of nuclear origin.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/genética , Acidose Láctica/genética , Criança , Pré-Escolar , Complexo III da Cadeia de Transporte de Elétrons/deficiência , Fibroblastos/patologia , Humanos , Hipoglicemia , Recém-Nascido , Falência Hepática , Doenças Mitocondriais , Mutação
17.
Elife ; 52016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27623147

RESUMO

Previously, we identified QIL1 as a subunit of mitochondrial contact site (MICOS) complex and demonstrated a role for QIL1 in MICOS assembly, mitochondrial respiration, and cristae formation critical for mitochondrial architecture (Guarani et al., 2015). Here, we identify QIL1 null alleles in two siblings displaying multiple clinical symptoms of early-onset fatal mitochondrial encephalopathy with liver disease, including defects in respiratory chain function in patient muscle. QIL1 absence in patients' fibroblasts was associated with MICOS disassembly, abnormal cristae, mild cytochrome c oxidase defect, and sensitivity to glucose withdrawal. QIL1 expression rescued cristae defects, and promoted re-accumulation of MICOS subunits to facilitate MICOS assembly. MICOS assembly and cristae morphology were not efficiently rescued by over-expression of other MICOS subunits in patient fibroblasts. Taken together, these data provide the first evidence of altered MICOS assembly linked with a human mitochondrial disease and confirm a central role for QIL1 in stable MICOS complex formation.


Assuntos
Hepatopatias/genética , Hepatopatias/patologia , Proteínas de Membrana/deficiência , Encefalomiopatias Mitocondriais/genética , Encefalomiopatias Mitocondriais/patologia , Proteínas Mitocondriais/deficiência , Mutação , Feminino , Humanos , Recém-Nascido , Masculino , Testes de Sensibilidade Microbiana , Irmãos
18.
Free Radic Biol Med ; 96: 190-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27126960

RESUMO

The pathophysiological mechanisms underlying Complex I (CI) deficiencies are understood only partially which severely limits the treatment of this common, devastating, mitochondrial disorder. Recently, we have shown that resveratrol (RSV), a natural polyphenol, has beneficial effects on CI deficiency of nuclear origin. Here, we demonstrate that RSV is able to correct the biochemical defect in oxygen consumption in five of thirteen CI-deficient patient cell lines. Other beneficial effects of RSV include a decrease of total intracellular ROS and the up-regulation of the expression of mitochondrial superoxide dismutase (SOD2) protein, a key antioxidant defense enzyme. The molecular mechanisms leading to the up-regulation of SOD2 protein expression by RSV require the estrogen receptor (ER) and the estrogen-related receptor alpha (ERRα). Although RSV increases the level of SOD2 protein in patients' fibroblasts, the enzyme activity is not increased, in contrast to normal fibroblasts. This led us to hypothesize that SOD2 enzyme activity is regulated post-translationally. This regulation involves SIRT3, a mitochondrial NAD(+)-dependent deacetylase and is critically dependent on NAD(+) levels. Taken together, our data show that the metabolic effects of RSV combined with its antioxidant capacities makes RSV particularly interesting as a candidate molecule for the therapy of CI deficiencies.


Assuntos
Complexo I de Transporte de Elétrons/deficiência , Receptor alfa de Estrogênio/genética , Doenças Mitocondriais/tratamento farmacológico , Receptores de Estrogênio/genética , Sirtuína 3/genética , Estilbenos/administração & dosagem , Superóxido Dismutase/genética , Antioxidantes/metabolismo , Células Cultivadas , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Consumo de Oxigênio/genética , Espécies Reativas de Oxigênio/metabolismo , Resveratrol , Transdução de Sinais/efeitos dos fármacos , Receptor ERRalfa Relacionado ao Estrogênio
19.
JIMD Rep ; 29: 109-113, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26920903

RESUMO

The C10orf2 gene encodes Twinkle, a protein involved in mitochondrial DNA (mtDNA) replication. Twinkle mutations cause mtDNA deletion or depletion and are associated with a large spectrum of clinical symptoms including dominant progressive external ophthalmoplegia (adPEO), infantile-onset spinocerebellar ataxia (IOSCA), and early-onset encephalopathy. The diagnosis remains difficult because of the wide range of symptoms and lack of association with specific metabolic changes. We report herein a child with early-onset encephalopathy, unusual abnormal movements, deafness, and axonal neuropathy. All laboratory investigations were normal with the exceptions of high alpha-fetoprotein levels and an abnormal glycosylation profile. These abnormal parameters resulted in misdiagnosis as a previously unidentified congenital disorder of glycosylation (CDG) type I syndrome. Whole exome sequencing revealed two point mutations in C10orf2 that were confirmed by Sanger sequencing; neither had been previously reported. This report enlarges the clinical phenotype of Twinkle mutations and suggests that an abnormal glycosylation profile suggestive of CDG type I associated with high blood alpha-fetoprotein levels without obvious cause should prompt Twinkle sequencing.

20.
J Cereb Blood Flow Metab ; 36(3): 562-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26661198

RESUMO

This study investigated the effect of intranasal administration of progesterone on the early brain mitochondrial respiratory chain dysfunction and oxidative damage after transient middle cerebral occlusion in male and female mice. We showed that progesterone (8 mg/kg at 1 h post-middle cerebral occlusion) restored the mitochondrial reduced glutathione pool and the nicotinamide adenine dinucleotide-linked respiration in both sexes. Progesterone also reversed the decrease of the flavin adenine dinucleotide-linked respiration, which was only observed in females. Our findings point to a sex difference in stroke effects on the brain respiratory chain and suggest that the actions of progesterone on mitochondrial function may participate in its neuroprotective properties.


Assuntos
Encéfalo/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Progesterona/uso terapêutico , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Respiração Celular/efeitos dos fármacos , Feminino , Flavina-Adenina Dinucleotídeo/análogos & derivados , Flavina-Adenina Dinucleotídeo/metabolismo , Glutationa/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/patologia , NAD/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Consumo de Oxigênio/efeitos dos fármacos , Progesterona/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...