Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Biomech (Bristol, Avon) ; 104: 105949, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37018954

RESUMO

BACKGROUND: Current anatomic anterolateral ligament reconstruction is typically performed using either a gracilis tendon or an iliotibial band graft based on their quasi-static behavior. However, there is limited knowledge about their viscoelastic behaviors. This study aimed to characterize the viscoelastic properties of the anterolateral ligament, distal iliotibial band, distal gracilis tendon and proximal gracilis tendon for graft material choice in anterolateral ligament reconstruction. METHODS: All the tissues were harvested from thirteen fresh-frozen cadaveric knees and subjected to preconditioning (3-6 MPa), sinusoidal cycle (1.2-12 MPa), dwell at constant load (12 MPa), and load to failure (3%/s). The quasi-static and viscoelastic properties of the soft tissues were computed and compared using a linear mixed model (p < 0.05). FINDINGS: The hysteresis of anterolateral ligament (mean:0.4 Nm) was comparable with gracilis halves (p > 0.85) but iliotibial band (6 Nm) was significantly higher (p < 0.001,ES = 6.5). In contrast, the dynamic creep of anterolateral ligament (0.5 mm) was similar to iliotibial band (0.7 mm, p > 0.82) whereas both gracilis halves were significantly lower (p < 0.007,ES > 1.4). The elastic modulus of anterolateral ligament (181.4 MPa, p < 0.001,ES > 2.1) was the lowest compared to the grafts materials (distal gracilis tendon:835 MPa, distal gracilis tendon:726 MPa, iliotibial band:910 MPa). Additionally, the failure load of the anterolateral ligament (124.5 N, p < 0.001,ES > 2.9) was also the lowest. INTERPRETATION: The mechanical properties of the gracilis halves and iliotibial band were significantly different from anterolateral ligament, except for hysteresis and dynamic creep, respectively. Our findings showed that the gracilis halves may be a more appropriate graft choice for anterolateral ligament reconstruction due to its low energy dissipation and permanent deformation under dynamic loads.


Assuntos
Lesões do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Humanos , Fenômenos Biomecânicos , Cadáver , Ligamento Cruzado Anterior/cirurgia , Tendões/transplante , Articulação do Joelho/cirurgia , Lesões do Ligamento Cruzado Anterior/cirurgia
2.
Arch Orthop Trauma Surg ; 143(4): 2165-2173, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35767036

RESUMO

INTRODUCTION: Despite the existence of diverse total knee implant designs, few data is available on the relationship between the level of implant constraint and the postoperative joint stability in the frontal plane and strain in the collateral ligaments. The current study aimed to document this relation in an ex vivo setting. MATERIALS AND METHODS: Six fresh-frozen lower limbs underwent imaging for preparation of specimen-specific surgical guides. Specimens were dissected and assessed for joint laxity using the varus-valgus stress tests at fixed knee flexion angles. A handheld dynamometer applied tensile loads at the ankle, thereby resulting in a knee abduction-adduction moment of 10 Nm. Tibiofemoral kinematics were calculated using an optical motion capture system, while extensometers attached to medial collateral (MCL) and lateral collateral ligament (LCL) measured strain. Native joint testing was followed by four TKA designs from a single implant line-cruciate retaining, posterior stabilised, varus-valgus constrained and hinged knee (HK)-and subsequent testing after each implantation. Repeated measures linear mixed-models (p < 0.05) were used to compare preoperative vs. postoperative data on frontal plane laxity and collateral ligament strain. RESULTS: Increasing implant constraint reduced frontal plane laxity across knee flexion, especially in deep flexion (r2 > 0.76), and MCL strain in extension; however, LCL strain reduction was not consistent. Frontal plane laxity increased with knee flexion angle, but similar trends were inconclusive for ligament strain. HK reduced joint laxity and ligament strain as compared to the native condition consistently across knee flexion angle, with significant reductions in flexion (p < 0.024) and extension (p < 0.001), respectively, thereby elucidating the implant design-induced joint stability. Ligament strain exhibited a strong positive correlation with varus-valgus alignment (r2 = 0.96), notwithstanding knee flexion angle or TKA implant design. CONCLUSION: The study demonstrated that increasing the constraint of a TKA resulted in lower frontal plane laxity of the knee. With implant features impacting laxity in the coronal plane, consequentially affecting strain in collateral ligaments, surgeons must consider these factors when deciding a TKA implant, especially for primary TKA. LEVEL OF EVIDENCE: V.


Assuntos
Artroplastia do Joelho , Instabilidade Articular , Prótese do Joelho , Humanos , Artroplastia do Joelho/métodos , Instabilidade Articular/cirurgia , Cadáver , Articulação do Joelho/cirurgia , Amplitude de Movimento Articular , Fenômenos Biomecânicos
3.
Arch Orthop Trauma Surg ; 142(7): 1633-1644, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34216262

RESUMO

INTRODUCTION: Poor soft tissue balance in total knee arthroplasty (TKA) often results in patient dissatisfaction and reduced joint longevity. Patella-in-place balancing (PIPB) is a novel technique which aims to restore native collateral ligament behavior without collateral ligament release, while restoring post-operative patellar position. This study aimed to assess the effectiveness of this novel technique through a detailed ex vivo biomechanical analysis by comparing post-TKA tibiofemoral kinematics and collateral ligament behavior to the native condition. MATERIALS AND METHODS: Eight fresh-frozen cadaveric legs (89.2 ± 6 years) were tested on a validated dynamic knee simulator, following computed tomography imaging. Specimens were subjected to passive flexion (10-120°), squatting (35-100°), and varus/valgus laxity testing (10 Nm at 0°, 30°, 60°, 90° flexion). An optical motion capture system recorded markers affixed rigidly to the femur, tibia, and patella, while digital extensometers longitudinally affixed to the superficial medial collateral ligament (MCL) and lateral collateral ligament (LCL) collected synchronized strain data. Following native testing, a Stryker Triathlon CR TKA (Stryker, MI, USA) was performed on each specimen and the identical testing protocol was repeated. Statistical analyses were performed using a linear mixed model for functional motor tasks, while Wilcoxon signed-rank test was used for laxity tests (p < 0.05). RESULTS: Postoperative laxity was lower than the native condition at all flexion angles while post-operative ligament strain was lowered only for MCL at 30° (p = 0.017) and 60° (p = 0.011). Postoperative femoral rollback patterns were comparable to the native condition in passive flexion but demonstrated a more pronounced medial pivot during squatting. CONCLUSIONS: Balancing a TKA with the PIPB technique resulted in reduced joint laxity, while restoring collateral ligament strains. The technique also seemed to restore kinematics and strains, especially in passive flexion.


Assuntos
Artroplastia do Joelho , Ligamentos Colaterais , Artroplastia do Joelho/métodos , Fenômenos Biomecânicos , Cadáver , Ligamentos Colaterais/cirurgia , Humanos , Articulação do Joelho/cirurgia , Patela/cirurgia , Amplitude de Movimento Articular
5.
Arch Orthop Trauma Surg ; 137(11): 1557-1563, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28936684

RESUMO

INTRODUCTION: Fixed-bearing unicompartmental knee arthroplasty (UKA) closely replicates native knee kinematics. As few studies have assessed kinematics following mobile-bearing (MB) UKA, the current study aimed to investigate whether MB UKA preserves natural knee kinematics. MATERIALS AND METHODS: Seven fresh-frozen full-leg cadaver specimens were prepared and mounted in a kinematic rig that allowed all degrees of freedom at the knee. Three motion patterns, passive flexion-extension (0°-110° flexion), open-chain extension (5°-70° flexion) and squatting (30°-100° flexion), were performed pre- and post-implantation of a medial MB UKA and compared in terms of rotational and translational knee joint kinematics in the different anatomical planes, respectively. RESULTS: In terms of frontal plane rotational kinematics, MB UKA specimens were in a more valgus orientation for all motion patterns. In the axial plane, internal rotation of the tibia before and after UKA was consistent, regardless of motion task, with no significant differences. In terms of frontal plane, i.e., inferior-superior, translations, the FMCC was significantly higher in UKA knees in all flexion angles and motor tasks, except in early flexion during passive motion. In terms of axial plane, i.e., anteroposterior (AP), translations, during open-chain activities, the femoral medial condyle center (FMCC) tended to be more posterior following UKA relative to the native knee in mid-flexion and above. AP excursions of the FMCC were small in all tested motions, however. There was substantial AP translation of the femoral lateral condyle center during passive motion before and after UKA, which was significantly different for flexion angles > 38°. CONCLUSIONS: Our study data demonstrate that the kinematics of the unloaded knee following MB UKA closely resemble those of the native knee while relative medial overstuffing with UKA will result in the joint being more valgus. However, replacing the conforming and rigidly fixed medial meniscus with a mobile inlay may successfully prevent aberrant posterior translation of the medial femoral compartment during passive motion and squatting motion.


Assuntos
Artroplastia do Joelho/métodos , Fenômenos Biomecânicos/fisiologia , Articulação do Joelho , Humanos , Articulação do Joelho/fisiologia , Articulação do Joelho/cirurgia
6.
J Biomech ; 61: 258-262, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28802742

RESUMO

Ultrasound-based methods have shown promise in their ability to characterize non-uniform deformations in large energy-storing tendons such as the Achilles and patellar tendons, yet applications to other areas of the body have been largely unexplored. The noninvasive quantification of collateral ligament strain could provide an important clinical metric of knee frontal plane stability, which is relevant in ligament injury and for measuring outcomes following total knee arthroplasty. In this pilot cadaveric experiment, we investigated the possibility of measuring collateral ligament strain with our previously validated speckle-tracking approach, but encountered a number of challenges during both data acquisition and processing. Given the clinical interest in this type of tool, and the fact that this is a developing area of research, the goal of this article is to transparently describe this pilot study, both in terms of methods and results, while also identifying specific challenges to this work and areas for future study. Some challenges faced relate generally to speckle-tracking of soft tissues (e.g. the limitations of using a 2D imaging modality to characterize 3D motion), while others are specific to this application (e.g. the small size and complex anatomy of the collateral ligaments). This work illustrates a clear need for additional studies, particularly relating to the collection of ground-truth data and more thorough validation work. These steps will be critical prior to the translation of ultrasound-based measures of collateral ligament strains into the clinic.


Assuntos
Ligamento Colateral Médio do Joelho/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Elasticidade , Feminino , Humanos , Masculino , Ligamento Colateral Médio do Joelho/fisiologia , Projetos Piloto , Ultrassonografia
7.
Arch Orthop Trauma Surg ; 137(8): 1121-1128, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28677074

RESUMO

INTRODUCTION: Medial knee instability is a key clinical parameter for assessing ligament injury and arthroplasty success, but current methods for measuring stability are typically either qualitative or involve ionizing radiation. The purpose of this study was to perform a preliminary analysis of whether ultrasound (US) could be used as an alternate approach for quantifying medial instability by comparing an US method with an approach mimicking the current gold standard fluoroscopy method. MATERIALS AND METHODS: US data from the medial knee were collected, while cadaveric lower limbs (n = 8) were loaded in valgus (10 Nm). During post-processing, the US gap width was measured by identifying the medial edges of the femur and tibia and computing the gap width between these points. For comparison, mimicked fluoroscopy (mFluoro) images were created from specimen-specific bone models, developed from segmented CT scans, and from kinematic data collected during testing. Then, gap width was measured in the mFluoro images based on two different published approaches with gap width measured either at the most medial or at the most distal aspect of the femur. RESULTS: Gap width increased significantly with loading (p < 0.001), and there were no significant differences between the US method (unloaded: 8.7 ± 2.4 mm, loaded: 10.7 ± 2.2 mm) and the mFluoro method that measured gap width at the medial femur. In terms of the change in gap width with load, no correlation with the change in abduction angle was observed, with no correlation between the various methods. Inter-rater reliability for the US method was high (0.899-0.952). CONCLUSIONS: Ultrasound shows promise as a suitable alternative for quantifying medial instability without radiation exposure. However, the outstanding limitations of existing approaches and lack of true ground-truth data require that further validation work is necessary to better understand the clinical viability of an US approach for measuring medial knee gap width.


Assuntos
Instabilidade Articular/diagnóstico por imagem , Articulação do Joelho/diagnóstico por imagem , Joelho/diagnóstico por imagem , Ultrassonografia , Fluoroscopia , Humanos
8.
Knee ; 24(4): 751-760, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28433348

RESUMO

BACKGROUND: The recently reintroduced bicruciate retaining Total Knee Arthroplasty (BCR TKA) is an effort to reproduce kinematics closer to the native knee. However, there is no data on appropriate balancing with this implant. Balancing is crucial and challenging as medial and lateral polyethylene (PE) inlays are modular, which allows for placement of different thicknesses in the medial and lateral compartments. This study aimed at providing a detailed kinematic view on balancing BCR TKA. METHODS: Seven fresh frozen cadaver legs were mounted in a kinematic rig that applied squatting under application of physiologic quadriceps and hamstring forces. Additionally, specimen laxity was assessed using Lachman tests and varus/valgus stress tests. Following testing on the native knee, a BCR TKA was implanted in each specimen and all trials were repeated. Using one millimeter increments, five inlay thicknesses were tested to simulate optimal balancing, symmetric under-, and overstuffing, valgus constellation, and varus constellation. RESULTS: Overall, knee kinematics following BCR TKA seem to be very close to the native knee. The changes as introduced to tibiofemoral kinematics through over- or understuffing the polyethylene inserts are affecting the system only to a minor degree and generally lack statistical significance. Reproduction of the tibial varus via PE-Inlays did not lead to kinematics much closer to the native knee. CONCLUSIONS: The changes introduced to tibiofemoral kinematics by removal of the conforming meniscus and cartilage and replacement with a flat PE insert and femoral component are of more impact than different inlay sizes and their combinations for a BCR TKA.


Assuntos
Artroplastia do Joelho/métodos , Articulação do Joelho/cirurgia , Prótese do Joelho/efeitos adversos , Desenho de Prótese/efeitos adversos , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos/fisiologia , Cadáver , Feminino , Humanos , Articulação do Joelho/fisiopatologia , Masculino , Polietileno/efeitos adversos , Amplitude de Movimento Articular/fisiologia , Tíbia/cirurgia
9.
Arthroscopy ; 33(5): 1028-1035.e1, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28359668

RESUMO

PURPOSE: To characterize the tensile and histologic properties of the anterolateral ligament (ALL), inferior glenohumeral ligament (IGHL), and knee capsule. METHODS: Standardized samples of the ALL (n = 19), anterolateral knee capsule (n = 15), and IGHL (n = 13) were isolated from fresh-frozen human cadavers for uniaxial tensile testing to failure. An additional 6 samples of the ALL, capsule, and IGHL were procured for histologic analysis and determination of elastin content. RESULTS: All investigated mechanical properties were significantly greater for both the ALL and IGHL when compared with capsular tissue. In contrast, no significant differences between the ALL and IGHL were found for any property. The elastic modulus of ALL and IGHL samples was 174 ± 92 MPa and 139 ± 60 MPa, respectively, compared with 62 ± 30 MPa for the capsule (P = .001). Ultimate stress was significantly lower (P < .001) for the capsule, at 13.4 ± 7.7 MPa, relative to the ALL and IGHL, at 46.4 ± 20.1 MPa and 38.7 ± 16.3 MPa, respectively. The ultimate strain at failure was 37.8% ± 7.9% for the ALL and 39.5% ± 9.4% for the IGHL; this was significantly greater (P = .041 and P = .02, respectively) for both relative to the capsule, at 32.6% ± 8.4%. The strain energy density was 7.8 ± 3.1 MPa for the ALL, 2.1 ± 1.3 MPa for the capsule, and 7.1 ± 3.1 MPa for the IGHL (P < .001). The ALL and IGHL consisted of collagen bundles aligned in a parallel manner, containing elastin bundles, which was in contrast to the random collagen architecture noted in capsule samples. CONCLUSIONS: The ALL has similar tensile and histologic properties to the IGHL. The tensile properties of the ALL are significantly greater than those observed in the knee capsule. CLINICAL RELEVANCE: The ALL is not just a thickening of capsular tissue and should be considered a distinct ligamentous structure comparable to the IGHL in the shoulder. The tensile behavior of the ALL is similar to the IGHL, and treatment strategies should take this into account.


Assuntos
Articulação do Joelho/fisiologia , Ligamentos Articulares/fisiologia , Articulação do Ombro/fisiologia , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Cadáver , Feminino , Humanos , Cápsula Articular/anatomia & histologia , Cápsula Articular/fisiologia , Articulação do Joelho/anatomia & histologia , Ligamentos Articulares/anatomia & histologia , Masculino , Articulação do Ombro/anatomia & histologia , Resistência à Tração/fisiologia
10.
J Biomed Mater Res B Appl Biomater ; 105(6): 1461-1468, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27087200

RESUMO

Acrylic bone cement is often used in total joint replacement procedures to anchor an orthopaedic implant to bone. Bone cement is a viscoelastic material that exhibits creep and stress relaxation properties, which have been previously characterized using a variety of techniques such as flexural testing. Nanoindentation has become a popular method to characterize polymer mechanical properties at the nanoscale due to the technique's high sensitivity and the small sample volume required for testing. The purpose of the present work therefore was to determine the mechanical properties of bone cement using traditional macroscale techniques and compare the results to those obtained from nanoindentation. To this end, the quasi-static and viscoelastic properties of two commercially available cements, Palacos and Simplex, were assessed using a combination of three-point bending and nanoindentation. Quasi-static properties obtained from nanoindentation tended to be higher relative to three-point bending. The general displacement and creep compliance trends were similar for the two methods. These findings suggest that nanoindentation is an attractive characterization technique for bone cement, due to the small sample volumes required for testing. This may prove particularly useful in testing failed/retrieved cement samples from patients where material availability is typically limited. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1461-1468, 2017.


Assuntos
Cimentos Ósseos/química , Teste de Materiais , Elasticidade , Estresse Mecânico , Viscosidade
11.
Mater Sci Eng C Mater Biol Appl ; 48: 188-96, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25579913

RESUMO

Prosthetic joint infection is one of the most serious complications that can lead to failure of a total joint replacement. Recently, the rise of multidrug resistant bacteria has substantially reduced the efficacy of antibiotics that are typically incorporated into acrylic bone cement. Silver nanoparticles (AgNPs) are an attractive alternative to traditional antibiotics resulting from their broad-spectrum antimicrobial activity and low bacterial resistance. The purpose of this study, therefore, was to incorporate metallic silver nanoparticles into acrylic bone cement and quantify the effects on the cement's mechanical, material and antimicrobial properties. AgNPs at three loading ratios (0.25, 0.5, and 1.0% wt/wt) were incorporated into a commercial bone cement using a probe sonication technique. The resulting cements demonstrated mechanical and material properties that were not substantially different from the standard cement. Testing against Staphylococcus aureus and Staphylococcus epidermidis using Kirby-Bauer and time-kill assays demonstrated no antimicrobial activity against planktonic bacteria. In contrast, cements modified with AgNPs significantly reduced biofilm formation on the surface of the cement. These results indicate that AgNP-loaded cement is of high potential for use in primary arthroplasty where prevention of bacterial surface colonization is vital.


Assuntos
Anti-Infecciosos/farmacologia , Cimentos Ósseos/química , Nanopartículas Metálicas/química , Polimetil Metacrilato/química , Prata/farmacologia , Animais , Anti-Infecciosos/química , Biofilmes/efeitos dos fármacos , Fenômenos Biomecânicos , Cimentos Ósseos/farmacologia , Linhagem Celular/efeitos dos fármacos , Teste de Materiais/métodos , Camundongos Transgênicos , Osteoblastos/efeitos dos fármacos , Polimetil Metacrilato/farmacologia , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/fisiologia
12.
Mater Sci Eng C Mater Biol Appl ; 42: 168-76, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25063107

RESUMO

Soluble particulate fillers can be incorporated into antibiotic-loaded acrylic bone cement in an effort to enhance antibiotic elution. Xylitol is a material that shows potential for use as a filler due to its high solubility and potential to inhibit biofilm formation. The objective of this work, therefore, was to investigate the usage of low concentrations of xylitol in a gentamicin-loaded cement. Five different cements were prepared with various xylitol loadings (0, 1, 2.5, 5 or 10 g) per cement unit, and the resulting impact on the mechanical properties, cumulative antibiotic release, biofilm inhibition, and thermal characteristics were quantified. Xylitol significantly increased cement porosity and a sustained increase in gentamicin elution was observed in all samples containing xylitol with a maximum cumulative release of 41.3%. Xylitol had no significant inhibitory effect on biofilm formation. All measured mechanical properties tended to decrease with increasing xylitol concentration; however, these effects were not always significant. Polymerization characteristics were consistent among all groups with no significant differences found. The results from this study indicate that xylitol-modified bone cement may not be appropriate for implant fixation but could be used in instances where sustained, increased antibiotic elution is warranted, such as in cement spacers or beads.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Cimentos Ósseos/química , Gentamicinas/farmacologia , Xilitol/química , Antibacterianos/química , Antibacterianos/farmacocinética , Cimentos Ósseos/farmacocinética , Cimentos Ósseos/farmacologia , Gentamicinas/química , Gentamicinas/farmacocinética , Teste de Materiais , Fenômenos Mecânicos , Polimetil Metacrilato/química , Solubilidade , Staphylococcus aureus/efeitos dos fármacos , Xilitol/farmacologia
13.
J Mech Behav Biomed Mater ; 37: 141-52, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24911668

RESUMO

Acrylic bone cement is widely used to anchor orthopedic implants to bone and mechanical failure of the cement mantle surrounding an implant can contribute to aseptic loosening. In an effort to enhance the mechanical properties of bone cement, a variety of nanoparticles and fibers can be incorporated into the cement matrix. Mesoporous silica nanoparticles (MSNs) are a class of particles that display high potential for use as reinforcement within bone cement. Therefore, the purpose of this study was to quantify the impact of modifying an acrylic cement with various low-loadings of mesoporous silica. Three types of MSNs (one plain variety and two modified with functional groups) at two loading ratios (0.1 and 0.2wt/wt) were incorporated into a commercially available bone cement. The mechanical properties were characterized using four-point bending, microindentation and nanoindentation (static, stress relaxation, and creep) while material properties were assessed through dynamic mechanical analysis, differential scanning calorimetry, thermogravimetric analysis, FTIR spectroscopy, and scanning electron microscopy. Four-point flexural testing and nanoindentation revealed minimal impact on the properties of the cements, except for several changes in the nano-level static mechanical properties. Conversely, microindentation testing demonstrated that the addition of MSNs significantly increased the microhardness. The stress relaxation and creep properties of the cements measured with nanoindentation displayed no effect resulting from the addition of MSNs. The measured material properties were consistent among all cements. Analysis of scanning electron micrographs images revealed that surface functionalization enhanced particle dispersion within the cement matrix and resulted in fewer particle agglomerates. These results suggest that the loading ratios of mesoporous silica used in this study were not an effective reinforcement material. Future work should be conducted to determine the impact of higher MSN loading ratios and alternative functional groups.


Assuntos
Teste de Materiais , Nanopartículas/química , Polimetil Metacrilato/química , Dióxido de Silício/química , Fenômenos Mecânicos , Microtecnologia , Nanotecnologia , Porosidade , Propriedades de Superfície , Temperatura
14.
J Mech Behav Biomed Mater ; 29: 451-61, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24211354

RESUMO

Polymethyl methacrylate bone cement is the most common and successful method used to anchor orthopedic implants to bone, as evidenced by data from long-term national joint registries. Despite these successes, mechanical failure of the cement mantle can result in premature failure of an implant which has lead to the development of a variety of techniques aimed at enhancing the mechanical properties of the cement, such as the addition of particulate or fiber reinforcements. This technique however has not transitioned into clinical practice, likely due to problems relating to interfacial particle/matrix adhesion and high cement stiffness. Mesoporous silica nanoparticles (MSNs) are a class of materials that have received little attention as polymer reinforcements despite their potential ability to overcome these challenges. Therefore, the objective of the present study was to investigate the use of mesoporous silica nanoparticles (MSNs) as a reinforcement material within acrylic bone cement. Three different MSN loading ratios (0.5%, 2% and 5% (wt/wt)) were incorporated into a commercially available bone cement and the resulting impact on the cement's static mechanical properties, fatigue life and absorption/elution properties were quantified. The flexural modulus and compressive strength and modulus tended to increase with higher MSN concentration. Conversely, the flexural strength, fracture toughness and work to fracture all significantly decreased with increasing MSN content. The fatigue properties were found to be highly influenced by MSNs, with substantial detrimental effects seen with high MSN loadings. The incorporation of 5% MSNs significantly increased cement's hydration degree and elution percentage. The obtained results suggest that the interfacial adhesion strength between the nanoparticles and the polymer matrix was poor, leading to a decrease in the flexural and fatigue properties, or that adequate dispersion of the MSNs was not achieved. These findings could potentially be mitigated in future work by chemically modifying the mesoporous silica with functional groups.


Assuntos
Fenômenos Mecânicos , Nanopartículas/química , Polimetil Metacrilato/química , Dióxido de Silício/química , Absorção , Teste de Materiais , Procedimentos Ortopédicos , Fenômenos Físicos , Porosidade , Relação Estrutura-Atividade , Água/química
15.
J Mech Behav Biomed Mater ; 4(8): 2150-60, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22098915

RESUMO

Micro and nanostructural properties are believed to play a critical role in the osteoinductive capacity of bioceramic bone scaffolds. Physical characteristics also play an important role for optimum biological performance, including osteoconductivity and strength. In this study microstructural and nano-mechanical properties of a bioceramic bone scaffold were investigated as a function of the sintering temperature in the range of 950-1150 °C, through the use of scanning electron microscopy (SEM), X-ray diffraction (XRD) and nanoindentation testing. Although the samples presented the same crystallographic phase, an increase in sintering temperature resulted in increased grain size, density and crystallite size. The intrinsic mechanical properties were measured by nanoindentation testing and analyzed with the Oliver-Pharr method. The nanoindentation tests consisted of a series of fourteen partial unload tests (n=14 per treatment) of twelve steps ranging from 1 to 12 mN. Statistically significant increases in hardness and elastic modulus were measured for increasing sintering temperature. These results support the development of clinically successful bioceramic scaffolds with mechanical properties that encourage bone ingrowth and provide structural integrity.


Assuntos
Osso e Ossos/citologia , Cerâmica/química , Fenômenos Mecânicos , Temperatura , Alicerces Teciduais/química , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/fisiologia , Fosfatos de Cálcio/química , Cerâmica/farmacologia , Módulo de Elasticidade , Dureza , Injeções , Osteogênese/efeitos dos fármacos
16.
Clin Biomech (Bristol, Avon) ; 26(6): 642-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21458120

RESUMO

BACKGROUND: Chronic ulnar nerve compression is believed to be the primary cause of sensory and motor impairments of the hand in cyclists, a condition termed Cyclist's Palsy. The purpose of this study was to quantitatively evaluate the effects that hand position and glove type can have on pressure over the ulnar nerve, specifically in the hypothenar region of the hand. METHODS: Thirty-six experienced cyclists participated. Subjects rode at a constant cadence and power output on a stationary bicycle with their hands in the tops, drops and hoods of a standard drop handlebar. A high resolution pressure mat was used to record hand pressure with no gloves, unpadded gloves, foam-padded gloves and gel-padded gloves. Wrist posture was simultaneously monitored with a motion capture system. Laser scans of the subject's hand were separately acquired to register pressure maps onto the hand anatomy. FINDINGS: Average peak hypothenar pressures of 134-165kPa were recorded when cyclists did not wear gloves. A drops hand position induced the greatest hypothenar pressure and most extended wrist posture. Padded gloves were able to reduce hypothenar pressure magnitudes by 10 to 28%, with slightly better pressure reduction achieved using thin foam padding. INTERPRETATION: The hand pressure magnitudes and loading patterns seen in steady-state cycling are of sufficient magnitude to induce ulnar nerve damage if maintained for long periods. Wearing padded gloves and changing hand position can reduce the magnitude and duration of loading patterns, which are both important to mitigate risk for Cyclist's Palsy during extended rides.


Assuntos
Síndromes de Compressão do Nervo Ulnar/fisiopatologia , Nervo Ulnar/lesões , Nervo Ulnar/patologia , Adulto , Atletas , Ciclismo , Fenômenos Biomecânicos , Feminino , Luvas Protetoras , Mãos/inervação , Humanos , Masculino , Teste de Materiais , Modelos Anatômicos , Pressão , Síndromes de Compressão do Nervo Ulnar/etiologia , Punho/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...