Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSphere ; 8(5): e0004823, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37772811

RESUMO

The Materials Corrosion Test (MaCoTe) at the Underground Research Laboratory in Grimsel, Switzerland, assesses the microbiology and corrosion behavior of engineered barrier components of a deep geological repository (DGR) for long-term disposal of high-level nuclear waste. Diversity and temporal changes of bentonite-associated microbial community profiles were assessed under DGR-like conditions for compacted Wyoming MX-80 bentonite (1.25 g/cm3 and 1.50 g/cm3 targeted dry densities) exposed to natural groundwater. Using culture-dependent and molecular techniques, samples taken from the outside layer of 5-year borehole modules revealed up to 66% and 23% of 16S rRNA gene sequences affiliated with Desulfosporosinus and Desulfovibrio, respectively. Putatively involved in sulfate reduction, these taxa were almost undetectable within the bentonite core. Instead, microbial profiles of the inner bentonite core were similar to uncompacted bentonite used to pack modules years earlier, and were consistent with a previously published 1-year time point, revealing no detectable microbial growth. Abundances of culturable aerobic and anaerobic heterotrophic bacteria in the uncompacted bentonite were relatively low, with less than 1,000 and 100 colony-forming units (CFUs) per gram dry weight, respectively. Nearly 5 years after emplacement, culturable heterotrophic bacterial CFUs and sulfate-reducing bacteria did not change significantly inside the bentonite core. Phospholipid fatty acid data indicated similar lipid abundance, and corresponding cell abundance estimates, for inner 5-year MaCoTe bentonite samples compared to those previously obtained for 1-year incubations. Collectively, our results provide complementary evidence for microbial stability inside highly compacted bentonite exposed to conditions that mimic engineered barrier components of a deep geological repository. IMPORTANCE The long-term safety of a deep geological repository for used nuclear fuel is dependent on the performance of the engineered and natural barriers. Microbial activity can produce chemical species that can influence the corrosion of the disposal containers for used nuclear fuel. Although previous studies have evaluated the microbiology of compacted bentonite clay within subsurface environments, these have been limited to relatively short incubations (i.e., 1 year). The current study provides a unique 5-year perspective that reinforces previous findings of growth inhibition for bentonite clay exposed to in situ subsurface conditions.


Assuntos
Bentonita , Microbiota , Bentonita/química , RNA Ribossômico 16S/genética , Argila , Bactérias Anaeróbias/genética , Sulfatos
2.
Microorganisms ; 9(12)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34946113

RESUMO

Water-capped tailings technology (WCTT) is a key component of the reclamation strategies in the Athabasca oil sands region (AOSR) of northeastern Alberta, Canada. The release of microbial methane from tailings emplaced within oil sands pit lakes, and its subsequent microbial oxidation, could inhibit the development of persistent oxygen concentrations within the water column, which are critical to the success of this reclamation approach. Here, we describe the results of a four-year (2015-2018) chemical and isotopic (δ13C) investigation into the dynamics of microbial methane cycling within Base Mine Lake (BML), the first full-scale pit lake commissioned in the AOSR. Overall, the water-column methane concentrations decreased over the course of the study, though this was dynamic both seasonally and annually. Phospholipid fatty acid (PLFA) distributions and δ13C demonstrated that dissolved methane, primarily input via fluid fine tailings (FFT) porewater advection, was oxidized by the water column microbial community at all sampling times. Modeling and under-ice observations indicated that the dissolution of methane from bubbles during ebullition, or when trapped beneath ice, was also an important source of dissolved methane. The addition of alum to BML in the fall of 2016 impacted the microbial cycling in BML, leading to decreased methane oxidation rates, the short-term dominance of a phototrophic community, and longer-term shifts in the microbial community metabolism. Overall, our results highlight a need to understand the dynamic nature of these microbial communities and the impact of perturbations on the associated biogeochemical cycling within oil sands pit lakes.

3.
Sci Rep ; 11(1): 22349, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34785699

RESUMO

Characterizing the microbiology of swelling bentonite clays can help predict the long-term behaviour of deep geological repositories (DGRs), which are proposed as a solution for the management of used nuclear fuel worldwide. Such swelling clays represent an important component of several proposed engineered barrier system designs and, although cultivation-based assessments of bentonite clay are routinely conducted, direct nucleic acid detection from these materials has been difficult due to technical challenges. In this study, we generated direct comparisons of microbial abundance and diversity captured by cultivation and direct nucleic acid analyses using 15 reference bentonite clay samples. Regardless of clay starting material, the corresponding profiles from cultivation-based approaches were consistently associated with phylogenetically similar sulfate-reducing bacteria, denitrifiers, aerobic heterotrophs, and fermenters, demonstrating that any DGR-associated growth may be consistent, regardless of the specific bentonite clay starting material selected for its construction. Furthermore, dominant nucleic acid sequences in the as-received clay microbial profiles did not correspond with the bacteria that were enriched or isolated in culture. Few core taxa were shared among cultivation and direct nucleic acid analysis profiles, yet those in common were primarily affiliated with Streptomyces, Micrococcaceae, Bacillus, and Desulfosporosinus genera. These putative desiccation-resistant bacteria associated with diverse bentonite clay samples can serve as targets for experiments that evaluate microbial viability and growth within DGR-relevant conditions. Our data will be important for global nuclear waste management organizations, demonstrating that identifying appropriate design conditions with suitable clay swelling properties will prevent growth of the same subset of clay-associated bacteria, regardless of clay origin or processing conditions.

4.
Astrobiology ; 21(8): 981-996, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34406806

RESUMO

Understanding the distribution of trace organic material in a rocky environment is a key to constraining the material requirements for sustaining microbial life. We used an ultraviolet laser-induced fluorescence (LIF) spectroscopy instrument to characterize the distribution of organic biosignatures in basalts collected from two Mars-analog environments. We correlated the fluorescence results with alteration-related sample properties. These samples exhibit a range of alteration conditions found in the volcanic environments of Hawai'i Volcanoes National Park, Hawai'i (HI), and Craters of the Moon National Monument, Idaho (ID), including fumarolic systems. LIF mapping of the sample surfaces and interiors showed a heterogeneous distribution of areas of highly fluorescent material (point[s]-of-interest [POIs])-with fluorescence characteristics indicative of organic material. Results suggest that POIs are associated with secondary alteration mineral deposits in the rock's vesicles, including zeolites and calcite. Scanning electron microscopy with electron-dispersive X-ray spectroscopy was used to characterize the mineralogy present at POIs and support the evidence of carbon-bearing material. Overall, samples collected proximate to active or relict meteoric fumaroles from Hawai'i were shown to contain evidence for organic deposits. This suggests that these minerals are measurable spectroscopic targets that may be used to inform sample-site selection for astrobiology research.


Assuntos
Exobiologia , Marte , Meio Ambiente Extraterreno , Havaí , Lasers , Minerais/análise , Espectrometria de Fluorescência
5.
Sci Rep ; 10(1): 16095, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999318

RESUMO

The early evidence of domesticated animals and human-animal interaction in South Asia can be traced back to the seventh millennium BCE; however, our understanding of their use is incomplete and limited to the analysis of animal bones from archaeological sites. By the third millennium BCE with the emergence of the Indus Civilization, cattle and water-buffalo became the primary domesticates and outnumbered any other animals at the majority of the Indus settlements. Based on the analysis of skeletal remains and ethnographic data, a number of studies have suggested that cattle and water-buffalo were utilized for their meat, dairy, hides, and other labor-oriented jobs. While some of these claims are backed by empirical data, others are primarily discussed as hypotheses, for example, the exploitation of dairy. In this paper, by analyzing the absorbed lipid residues from fifty-nine ceramic sherds recovered from an agro-pastoral settlement that was occupied during the peak of the Indus period around mid- to late third millennium BCE, we provide the earliest direct evidence of dairy product processing, particularly from cattle and possibly from some water-buffalo. By providing direct evidence of animal product processing, we identify the use of primary domesticated animals and other resources in the diet during the Indus Civilization.


Assuntos
Laticínios/análise , Isótopos/química , Lipídeos/química , Animais , Animais Domésticos , Arqueologia/métodos , Ásia , Búfalos , Bovinos , Civilização , Dieta/métodos , Humanos , Carne/análise
6.
Life (Basel) ; 10(5)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429118

RESUMO

Freshwater microbialites (i.e., lithifying microbial mats) are quite rare in northern latitudes of the North American continent, with two lakes (Pavilion and Kelly Lakes) of southeastern BC containing a morphological variety of such structures. We investigated Kelly Lake microbialites using carbon isotope systematics, phospholipid fatty acids (PLFAs) and quantitative PCR to obtain biosignatures associated with microbial metabolism. δ13CDIC values (mean δ13CDIC -4.9 ± 1.1‱, n = 8) were not in isotopic equilibrium with the atmosphere; however, they do indicate 13C-depleted inorganic carbon into Kelly Lake. The values of carbonates on microbialite surfaces (δ13C) fell within the range predicted for equilibrium precipitation from ambient lake water δ13CDIC (-2.2 to -5.3‱). Deep microbialites (26 m) had an enriched δ13Ccarb value of -0.3 ± 0.5‱, which is a signature of photoautotrophy. The deeper microbialites (>20 m) had higher biomass estimates (via PLFAs), and a greater relative abundance of cyanobacteria (measured by 16S copies via qPCR). The majority of PLFAs constituted monounsaturated and saturated PLFAs, which is consistent with gram-negative bacteria, including cyanobacteria. The central PLFA δ13C values were highly depleted (-9.3 to -15.7‱) relative to δ13C values of bulk organic matter, suggesting a predominance of photoautotrophy. A heterotrophic signature was also detected via the depleted iso- and anteiso-15:0 lipids (-3.2 to -5.2‱). Based on our carbonate isotopic biosignatures, PLFA, and qPCR measurements, photoautotrophy is enriched in the microbialites of Kelly Lake. This photoautotrophy enrichment is consistent with the microbialites of neighboring Pavilion Lake. This indication of photoautotrophy within Kelly Lake at its deepest depths raises new insights into the limits of measurable carbonate isotopic biosignatures under light and nutrient limitations.

7.
Astrobiology ; 19(3): 347-368, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30840500

RESUMO

Short-term and long-term science plans were developed as part of the strategic planning process used by the Biologic Analog Science Associated with Lava Terrains (BASALT) science team to conduct two Mars-simulation missions investigating basalt habitability at terrestrial volcanic analog sites in 2016. A multidisciplinary team of scientists generated and codified a range of scientific hypotheses distilled into a Science Traceability Matrix (STM) that defined the set of objectives pursued in a series of extravehicular activity (EVA) campaigns performed across multiple field deployments. This STM was used to guide the pre-deployment selection of sampling stations within the selected Mars analog sites on the Earth based on precursor site information such as multispectral imagery. It also informed selection of hand-held instruments and observational data to collect during EVA to aid sample selection through latency-impacted interaction with an Earth-based Science Support Team. A significant portion of the pre-deployment strategic planning activities were devoted to station selection, ultimately the locations used for sample collection and EVA planning. During development of the EVAs, the BASALT science team identified lessons learned that could be used to inform future missions and analog activities, including the critical need for high-resolution precursor imagery that would enable the selection of stations that could meet the scientific objectives outlined in the STM.


Assuntos
Exobiologia/organização & administração , Atividade Extraespaçonave , Marte , Simulação de Ambiente Espacial/métodos , Planejamento Estratégico , Exobiologia/métodos , Exobiologia/tendências , Previsões
8.
Front Microbiol ; 9: 2180, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30374333

RESUMO

Members of the bacterial genus Agrococcus are globally distributed and found across environments so highly diverse that they include forests, deserts, and coal mines, as well as in potatoes and cheese. Despite how widely Agrococcus occurs, the extent of its physiology, genomes, and potential roles in the environment are poorly understood. Here we use whole-genome analysis, chemotaxonomic markers, morphology, and 16S rRNA gene phylogeny to describe a new isolate of the genus Agrococcus from freshwater microbialites in Pavilion Lake, British Columbia, Canada. We characterize this isolate as a new species Agrococcus pavilionensis strain RW1 and provide the first complete genome from a member of the genus Agrococcus. The A. pavilionensis genome consists of one chromosome (2,627,177 bp) as well as two plasmids (HC-CG1 1,427 bp, and LC-RRW783 31,795 bp). The genome reveals considerable genetic promiscuity via mobile elements, including a prophage and plasmids involved in integration, transposition, and heavy-metal stress. A. pavilionensis strain RW1 differs from other members of the Agrococcus genus by having a novel phospholipid fatty acid iso-C15:1Δ4, ß-galactosidase activity and amygdalin utilization. Carotenoid biosynthesis is predicted by genomic metabolic reconstruction, which explains the characteristic yellow pigmentation of A. pavilionensis. Metabolic reconstructions of strain RW1 genome predicts a pathway for releasing ammonia via ammonification amino acids, which could increase the saturation index leading to carbonate precipitation. Our genomic analyses suggest signatures of environmental adaption to the relatively cold and oligotrophic conditions of Pavilion Lake microbialites. A. pavilionensis strain RW1 in modern microbialites has an ecological significance in Pavilion Lake microbialites, which include potential roles in heavy-metal cycling and carbonate precipitation (e.g., ammonification of amino acids and filamentation which many trap carbonate minerals).

9.
Front Microbiol ; 9: 3189, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30671032

RESUMO

Members of the genus Exiguobacterium are found in diverse environments from marine, freshwaters, permafrost to hot springs. Exiguobacterium can grow in a wide range of temperature, pH, salinity, and heavy-metal concentrations. We characterized Exiguobacterium chiriqhucha strain RW2 isolated from a permanently cold freshwater microbialite in Pavilion Lake, British Columbia using metabolic assays, genomics, comparative genomics, phylogenetics, and fatty acid composition. Strain RW2 has the most extensive growth range for temperature (4-50°C) and pH (5-11) of known Exiguobacterium isolates. Strain RW2 genome predicts pathways for wide differential thermal, cold and osmotic stress using cold and heat shock cascades (e.g., csp and dnaK), choline and betaine uptake/biosynthesis (e.g., opu and proU), antiporters (e.g., arcD and nhaC Na+/K+), membrane fatty acid unsaturation and saturation. Here, we provide the first complete genome from Exiguobacterium chiriqhucha strain RW2, which was isolated from a freshwater microbialite. Its genome consists of a single 3,019,018 bp circular chromosome encoding over 3,000 predicted proteins, with a GC% content of 52.1%, and no plasmids. In addition to growing at a wide range of temperatures and salinities, our findings indicate that RW2 is resistant to sulfisoxazole and has the genomic potential for detoxification of heavy metals (via mercuric reductases, arsenic resistance pumps, chromate transporters, and cadmium-cobalt-zinc resistance genes), which may contribute to the metabolic potential of Pavilion Lake microbialites. Strain RW2 could also contribute to microbialite formation, as it is a robust biofilm former and encodes genes involved in the deamination of amino acids to ammonia (i.e., L-asparaginase/urease), which could potentially boost carbonate precipitation by lowering the local pH and increasing alkalinity. We also used comparative genomic analysis to predict the pathway for orange pigmentation that is conserved across the entire Exiguobacterium genus, specifically, a C30 carotenoid biosynthesis pathway is predicted to yield diaponeurosporene-4-oic acid as its final product. Carotenoids have been found to protect against ultraviolet radiation by quenching reactive oxygen, releasing excessive light energy, radical scavenging, and sunscreening. Together these results provide further insight into the potential of Exiguobacterium to exploit a wide range of environmental conditions, its potential roles in ecosystems (e.g., microbialites/microbial mats), and a blueprint model for diverse metabolic processes.

10.
J Chromatogr A ; 1536: 88-95, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-28712554

RESUMO

This study reports the first application of comprehensive two-dimensional gas chromatography coupled to a high-resolution quadrupole time-of-flight mass spectrometer (GC×GC/HRQTOF-MS) for the characterization of naphthenic acid fraction compounds (NAFCs) from the Alberta Oil Sands. High resolution mass spectrometry (HRMS) significantly increased the coverage of NAFCs in the mixture and allowed the differentiation of NAFCs from several chemical classes. It was demonstrated that GC×GC, in combination with the high mass accuracy and precision of the HRQTOF-MS, could distinguish chemical species with the C3 vs SH4 mass split at a much lower resolving power than required with direct infusion experiments. Mass defect plots were useful for visualizing the complex datasets generated by GC×GC/HRQTOF-MS and led to the identification of 1105 chemical species with unique elemental compositions (<5ppm mass accuracy). Mass defect plots were shown to be a powerful screening tool and enabled the detection of extensive isomer series from the SO2 chemical class, some of which have not been previously reported in oil sands related samples. The GC×GC/HRQTOF-MS approach is expected to improve NAFC monitoring programs since the technique allows the qualitative analysis of individual NAFCs and provides unique fingerprints via isomer distributions which may assist in future fingerprinting studies.


Assuntos
Ácidos Carboxílicos/química , Técnicas de Química Analítica/métodos , Cromatografia Gasosa-Espectrometria de Massas , Alberta , Ácidos Carboxílicos/análise , Campos de Petróleo e Gás , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
11.
Biotechnol Biofuels ; 10: 84, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28367229

RESUMO

BACKGROUND: Bioenergy with carbon capture and storage (BECCS) has come to be seen as one of the most viable technologies to provide the negative carbon dioxide emissions needed to constrain global temperatures. In practice, algal biotechnology is the only form of BECCS that could be realized at scale without compromising food production. Current axenic algae cultivation systems lack robustness, are expensive and generally have marginal energy returns. RESULTS: Here it is shown that microbial communities sampled from alkaline soda lakes, grown as biofilms at high pH (up to 10) and high alkalinity (up to 0.5 kmol m-3 NaHCO3 and NaCO3) display excellent (>1.0 kg m-3 day-1) and robust (>80 days) biomass productivity, at low projected overall costs. The most productive biofilms contained >100 different species and were dominated by a cyanobacterium closely related to Phormidium kuetzingianum (>60%). CONCLUSION: Frequent harvesting and red light were the key factors that governed the assembly of a stable and productive microbial community.

12.
Proc Natl Acad Sci U S A ; 113(49): E7927-E7936, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27872277

RESUMO

Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H2 Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH4 to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic ß-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H2 oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface.


Assuntos
Desnitrificação , Ecossistema , Metano/biossíntese , Microbiota , Enxofre/metabolismo , Processos Autotróficos , Carbono/metabolismo , Nitrogênio/metabolismo , África do Sul
13.
Front Microbiol ; 6: 1533, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26869997

RESUMO

Composite tailings (CT), an engineered, alkaline, saline mixture of oil sands tailings (FFT), processed sand and gypsum (CaSO4; 1 kg CaSO4 per m(3) FFT) are used as a dry reclamation strategy in the Alberta Oil Sands Region (AOSR). It is estimated that 9.6 × 10(8) m(3) of CT are either in, or awaiting emplacement in surface pits within the AOSR, highlighting their potential global importance in sulfur cycling. Here, in the first CT sulfur biogeochemistry investigation, integrated geochemical, pyrosequencing and lipid analyses identified high aqueous concentrations of ∑H2S (>300 µM) and highly altered sulfur compounds composition; low cell biomass (3.3 × 10(6)- 6.0 × 10(6) cells g(-1)) and modest bacterial diversity (H' range between 1.4 and 1.9) across 5 depths spanning 34 m of an in situ CT deposit. Pyrosequence results identified a total of 29,719 bacterial 16S rRNA gene sequences, representing 131 OTUs spanning19 phyla including 7 candidate divisions, not reported in oil sands tailings pond studies to date. Legacy FFT common phyla, notably, gamma and beta Proteobacteria, Firmicutes, Actinobacteria, and Chloroflexi were represented. However, overall CT microbial diversity and PLFA values were low relative to other contexts. The identified known sulfate/sulfur reducing bacteria constituted at most 2% of the abundance; however, over 90% of the 131 OTUs identified are capable of sulfur metabolism. While PCR biases caution against overinterpretation of pyrosequence surveys, bacterial sequence results identified here, align with phospholipid fatty acid (PLFA) and geochemical results. The highest bacterial diversities were associated with the depth of highest porewater [∑H2S] (22-24 m) and joint porewater co-occurrence of Fe(2+) and ∑H2S (6-8 m). Three distinct bacterial community structure depths corresponded to CT porewater regions of (1) shallow evident Fe((II)) (<6 m), (2) co-occurring Fe((II)) and ∑H2S (6-8 m) and (3) extensive ∑H2S (6-34 m) (UniFrac). Candidate divisions GNO2, NKB19 and Spam were present only at 6-8 m associated with co-occurring [Fe((II))] and [∑H2S]. Collectively, results indicate that CT materials are differentiated from other sulfur rich environments by modestly diverse, low abundance, but highly sulfur active and more enigmatic communities (7 candidate divisions present within the 19 phyla identified).

14.
Rapid Commun Mass Spectrom ; 28(19): 2075-83, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25156597

RESUMO

RATIONALE: Naphthenic acids (NAs) accumulate in oil sands process-affected water (OSPW) as a result of the water-based extraction processes, and represent one of the toxic fractions in OSPW. They exist as a complex mixture and so the development of an analytical method to characterize and quantify individual acids has been an on-going challenge. The multidimensional separation technique of two-dimensional gas chromatography (GC × GC) has the potential to provide a fingerprint of the sources of NAs and can potentially resolve individual analytes for target analysis. However, the identity and toxicity of a large proportion of the acids present in tailing waters are still unknown. METHODS: Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC × GC/TOFMS) was used to characterize NAs in a pore water sample from a Syncrude composite tailings (CT) deposit in Fort McMurray, Alberta, Canada. The extractable organic acid fraction was derivatized with diazomethane and the structures of selected resolved esters were elucidated through interpretation of their electron ionization (EI) mass spectra and, if available, confirmed by comparison with the spectra of reference standards. RESULTS: The high resolving power of the GC × GC/TOFMS technique allowed for the structural elucidation of numerous as yet unidentified acids in the CT pore water sample such as carboxylic acids containing a thiophene, indane, tetralin or cyclohexane moiety. Seventeen members of the previously reported class of adamantane-type carboxylic acids in oil sands process water could also be identified in the sample. CONCLUSIONS: This study underlines the complexity of naphthenic acid isomer distributions in composite tailings and provides a useful inventory of individual acids.

15.
Environ Sci Technol ; 47(23): 13303-12, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24219093

RESUMO

The Deepwater Horizon oil spill led to the severe contamination of coastal environments in the Gulf of Mexico. A previous study detailed coastal saltmarsh erosion and recovery in a number of oil-impacted and nonimpacted reference sites in Barataria Bay, Louisiana over the first 18 months after the spill. Concentrations of alkanes and polyaromatic hydrocarbons (PAHs) at oil-impacted sites significantly decreased over this time period. Here, a combination of DNA, lipid, and isotopic approaches confirm that microbial biodegradation was contributing to the observed petroleum mass loss. Natural abundance (14)C analysis of microbial phospholipid fatty acids (PLFA) reveals that petroleum-derived carbon was a primary carbon source for microbial communities at impacted sites several months following oil intrusion when the highest concentrations of oil were present. Also at this time, microbial community analysis suggests that community structure of all three domains has shifted with the intrusion of oil. These results suggest that Gulf of Mexico marsh sediments have considerable biodegradation potential and that natural attenuation is playing a role in impacted sites.


Assuntos
Monitoramento Ambiental/estatística & dados numéricos , Sedimentos Geológicos/microbiologia , Poluição por Petróleo/história , Petróleo/metabolismo , Áreas Alagadas , Biodegradação Ambiental , Carbono/metabolismo , Radioisótopos de Carbono/análise , Monitoramento Ambiental/métodos , Ácidos Graxos/análise , História do Século XXI , Louisiana , Microbiota/genética , Especificidade da Espécie
16.
Environ Pollut ; 175: 125-30, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23376543

RESUMO

Natural abundance (14)C analysis was applied to PLFAs collected from an industrial site in southern Ontario in order to assess microbial carbon sources and potential PAH biodegradation in soils. Δ(14)C of microbial phospholipid fatty acids (PLFA) at the site ranged from +54‰ to -697‰. Comparison of these values to surrounding carbon sources found that microbial carbon sources were derived primarily from vegetation and/or natural organic matter present in the soils rather than PAHs. This study highlights that microbes are able to utilize almost all available pools of organic matter including older pools which are thought to contain recalcitrant compounds. Furthermore, it shows that even with the presence of an active microbial community, there may be little biodegradation of PAHs. This study illustrates challenges in assessing microbial activity in the environment and the advantage of using natural abundance (14)C analysis as a tool to elucidate microbial carbon sources.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Microbiologia do Solo , Solo/química , Biodegradação Ambiental , Isótopos de Carbono , Monitoramento Ambiental , Ontário , Hidrocarbonetos Policíclicos Aromáticos/análise
17.
J Microbiol Methods ; 90(3): 145-51, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22561839

RESUMO

Isotopic analysis of cellular biomass has greatly improved our understanding of carbon cycling in the environment. Compound specific radiocarbon analysis (CSRA) of cellular biomass is being increasingly applied in a number of fields. However, it is often difficult to collect sufficient cellular biomass for analysis from oligotrophic waters because easy-to-use filtering methods that are free of carbon contaminants do not exist. The goal of this work was to develop a new column based filter to autonomously collect high volume samples of biomass from oligotrophic waters for CSRA using material that can be baked at 450°C to remove potential organic contaminants. A series of filter materials were tested, including uncoated sand, ferrihydrite-coated sand, goethite-coated sand, aluminum-coated sand, uncoated glass wool, ferrihydrite-coated glass wool, and aluminum-coated glass wool, in the lab with 0.1 and 1.0 µm microspheres and Escherichia coli. Results indicated that aluminum-coated glass wool was the most efficient filter and that the retention capacity of the filter far exceeded the biomass requirements for CSRA. Results from laboratory tests indicate that for oligotrophic waters with 1×10(5) cells ml(-1), 117l of water would need to be filtered to collect 100 µg of PLFA for bulk PLFA analysis and 2000 l for analysis of individual PLFAs. For field sampling, filtration tests on South African mine water indicated that after filtering 5955l, 450 µg of total PLFAs were present, ample biomass for radiocarbon analysis. In summary, we have developed a filter that is easy to use and deploy for collection of biomass for CSRA including total and individual PLFAs.


Assuntos
Biomassa , Radioisótopos de Carbono/química , Filtração/instrumentação , Microbiologia da Água , Alumínio/química , Carbono/química , Radioisótopos de Carbono/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Ácidos Graxos/química , Ácidos Graxos/isolamento & purificação , Ácidos Graxos/metabolismo , Filtração/métodos , Vidro/química , Água Subterrânea/microbiologia , Microscopia Eletrônica de Varredura , Microesferas , Fosfolipídeos/química , Fosfolipídeos/isolamento & purificação , Fosfolipídeos/metabolismo , Dióxido de Silício/química , Difração de Raios X
18.
Can J Microbiol ; 57(8): 623-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21815819

RESUMO

Molecular characterization of the microbial populations of soils and sediments contaminated with polycyclic aromatic hydrocarbons (PAHs) is often a first step in assessing intrinsic biodegradation potential. However, soils are problematic for molecular analysis owing to the presence of organic matter, such as humic acids. Furthermore, the presence of contaminants, such as PAHs, can cause further challenges to DNA extraction, quantification, and amplification. The goal of our study was to compare the effectiveness of four commercial soil DNA extraction kits (UltraClean Soil DNA Isolation kit, PowerSoil DNA Isolation kit, PowerMax Soil DNA Isolation kit, and FastDNA SPIN kit) to extract pure, high-quality bacterial and eukaryotic DNA from PAH-contaminated soils. Six different contaminated soils were used to determine if there were any biases among the kits due to soil properties or level of contamination. Extracted DNA was used as a template for bacterial 16S rDNA and eukaryotic 18S rDNA amplifications, and PCR products were subsequently analyzed using denaturing gel gradient electrophoresis (DGGE). We found that the FastDNA SPIN kit provided significantly higher DNA yields for all soils; however, it also resulted in the highest levels of humic acid contamination. Soil texture and organic carbon content of the soil did not affect the DNA yield of any kit. Moreover, a liquid-liquid extraction of the DNA extracts found no residual PAHs, indicating that all kits were effective at removing contaminants in the extraction process. Although the PowerSoil DNA Isolation kit gave relatively low DNA yields, it provided the highest quality DNA based on successful amplification of both bacterial and eukaryotic DNA for all six soils. DGGE fingerprints among the kits were dramatically different for both bacterial and eukaryotic DNA. The PowerSoil DNA Isolation kit revealed multiple bands for each soil and provided the most consistent DGGE profiles among replicates for both bacterial and eukaryotic DNA.


Assuntos
DNA Bacteriano/isolamento & purificação , DNA/isolamento & purificação , Hidrocarbonetos Policíclicos Aromáticos/análise , Kit de Reagentes para Diagnóstico , Microbiologia do Solo , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , Eletroforese em Gel de Gradiente Desnaturante , Extração Líquido-Líquido , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 16S/isolamento & purificação , RNA Ribossômico 18S/isolamento & purificação , Solo/análise , Poluentes do Solo/análise
19.
Science ; 332(6035): 1304-7, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21659601

RESUMO

The complex suite of organic materials in carbonaceous chondrite meteorites probably originally formed in the interstellar medium and/or the solar protoplanetary disk, but was subsequently modified in the meteorites' asteroidal parent bodies. The mechanisms of formation and modification are still very poorly understood. We carried out a systematic study of variations in the mineralogy, petrology, and soluble and insoluble organic matter in distinct fragments of the Tagish Lake meteorite. The variations correlate with indicators of parent body aqueous alteration. At least some molecules of prebiotic importance formed during the alteration.

20.
Environ Sci Technol ; 44(13): 5092-7, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20527914

RESUMO

Carbon sources utilized by the active microbial communities in shallow groundwater systems underlying three petroleum service stations were characterized using natural abundance radiocarbon ((14)C). Total organic carbon (TOC) Delta(14)C values ranged from -314 to -972 per thousand and petroleum-extracted residues (EXT-RES) ranged from -293 to -971 per thousand. Phospholipid fatty acids (PLFAs)-biomarkers for active microbial populations-ranged from -405 to -885 per thousand and a comparison of these values with potential carbon sources pointed to significant microbial assimilation of (14)C-free fossil carbon. The most (14)C-depleted PLFAs were found in the samples with the highest concentrations of total petroleum hydrocarbons (TPHs). A radiocarbon mass balance indicated up to 43% of the carbon in microbial PLFAs was derived from TPHs, providing direct evidence for biodegradation at two of three sites. At lower levels of TPHs Delta(14)C values of PLFAs were generally similar to or more enriched than all other carbon in the system indicating microbial utilization of a more (14)C-enriched carbon source and no resolvable evidence for microbial incorporation of petroleum-derived carbon. Results from this study suggest that it is possible to delineate petroleum biodegradation in groundwater systems using these techniques even in complex situations where there exists a wide range in the ages of natural organic matter (i.e., EXT-RES).


Assuntos
Radioisótopos de Carbono/química , Monitoramento Ambiental/métodos , Hidrocarbonetos/química , Petróleo , Biomarcadores/química , Carbono , Fósseis , Compostos Orgânicos/química , Poluentes Químicos da Água/análise , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...