Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Int J Mol Sci ; 20(16)2019 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-31405222

RESUMO

Although fragile X syndrome (FXS) is caused by a hypermethylated full mutation (FM) expansion with ≥200 cytosine-guanine-guanine (CGG) repeats, and a decrease in FMR1 mRNA and its protein (FMRP), incomplete silencing has been associated with more severe autism features in FXS males. This study reports on brothers (B1 and B2), aged 5 and 2 years, with autistic features and language delay, but a higher non-verbal IQ in comparison to typical FXS. CGG sizing using AmplideX PCR only identified premutation (PM: 55-199 CGGs) alleles in blood. Similarly, follow-up in B1 only revealed PM alleles in saliva and skin fibroblasts; whereas, an FM expansion was detected in both saliva and buccal DNA of B2. While Southern blot analysis of blood detected an unmethylated FM, methylation analysis with a more sensitive methodology showed that B1 had partially methylated PM alleles in blood and fibroblasts, which were completely unmethylated in buccal and saliva cells. In contrast, B2 was partially methylated in all tested tissues. Moreover, both brothers had FMR1 mRNA ~5 fold higher values than those of controls, FXS and PM cohorts. In conclusion, the presence of unmethylated FM and/or PM in both brothers may lead to an overexpression of toxic expanded mRNA in some cells, which may contribute to neurodevelopmental problems, including elevated autism features.


Assuntos
Transtorno Autístico/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , RNA Mensageiro/genética , Alelos , Pré-Escolar , Metilação de DNA , Humanos , Masculino , Mosaicismo , Mutação , Irmãos , Regulação para Cima
2.
Mol Autism ; 10: 21, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31073396

RESUMO

Background: Fragile X syndrome (FXS) is a common monogenic cause of intellectual disability with autism features. While it is caused by loss of the FMR1 product (FMRP), mosaicism for active and inactive FMR1 alleles, including alleles termed premutation (PM: 55-199 CGGs), is not uncommon. Importantly, both PM and active full mutation (FM: ≥ 200 CGGs) alleles often express elevated levels of mRNA that are thought to be toxic. This study determined if complete FMR1 mRNA silencing from FM alleles and/or levels of FMR1 mRNA (if present) in blood are associated with intellectual functioning and autism features in FXS. Methods: The study cohort included 98 participants (70.4% male) with FXS (FM-only and PM/FM mosaic) aged 1-43 years. A control group of 14 females were used to establish control FMR1 mRNA reference range. Intellectual functioning and autism features were assessed using the Mullen Scales of Early Learning or an age-appropriate Wechsler Scale and the Autism Diagnostic Observation Schedule-2nd Edition (ADOS-2), respectively. FMR1 mRNA was analysed in venous blood collected at the time of assessments, using the real-time PCR relative standard curve method. Results: Females with FXS had significantly higher levels of FMR1 mRNA (p < 0.001) than males. FMR1 mRNA levels were positively associated with age (p < 0.001), but not with intellectual functioning and autistic features in females. FM-only males (aged < 19 years) expressing FM FMR1 mRNA had significantly higher ADOS calibrated severity scores compared to FM-only males with completely silenced FMR1 (p = 0.011). However, there were no significant differences between these subgroups on intellectual functioning. In contrast, decreased levels of FMR1 mRNA were associated with decreased intellectual functioning in FXS males (p = 0.029), but not autism features, when combined with the PM/FM mosaic group. Conclusion: Incomplete silencing of toxic FM RNA may be associated with autistic features, but not intellectual functioning in FXS males. While decreased levels of mRNA may be more predictive of intellectual functioning than autism features. If confirmed in future studies, these findings may have implications for patient stratification, outcome measure development, and design of clinical and pre-clinical trials in FXS.


Assuntos
Alelos , Transtorno Autístico/complicações , Transtorno Autístico/genética , Síndrome do Cromossomo X Frágil/complicações , Síndrome do Cromossomo X Frágil/genética , Inativação Gênica , Mutação/genética , Adolescente , Adulto , Fatores Etários , Criança , Pré-Escolar , Feminino , Proteína do X Frágil da Deficiência Intelectual/sangue , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Humanos , Lactente , Deficiência Intelectual/genética , Masculino , Pessoa de Meia-Idade , Fenótipo , RNA Mensageiro/sangue , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Adulto Jovem
3.
Am J Transplant ; 19(4): 1037-1049, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30312536

RESUMO

Graft-derived cell-free DNA (donor-derived cell-free DNA) is an emerging marker of kidney allograft injury. Studies examining the clinical validity of this biomarker have previously used the graft fraction, or proportion of total cell-free DNA that is graft-derived. The present study evaluated the diagnostic validity of absolute measurements of graft-derived cell-free DNA, as well as calculated graft fraction, for the diagnosis of graft dysfunction. Plasma graft-derived cell-free DNA, total cell-free DNA, and graft fraction were correlated with biopsy diagnosis as well as individual Banff scores. Sixty-one samples were included in the analysis. For the diagnosis of antibody mediated rejection, the receiver-operator characteristic area under the curves of graft-derived cell-free DNA and graft fraction were 0.91 (95% CI 0.82-0.98) and 0.89 (95% CI 0.79-0.98), respectively. Both measures did not diagnose borderline or type 1A cellular mediated rejection. Graft fraction was associated with a broader range of Banff lesions, including lesions associated with cellular mediated rejection, while graft-derived cell-free DNA appeared more specific for antibody mediated rejection. Limitations of this study include a small sample size and lack of a validation cohort. The capacity for absolute quantification, and lower barriers to implementation of this methodology recommend it for further study.


Assuntos
Ácidos Nucleicos Livres/sangue , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/genética , Transplante de Rim , Adulto , Estudos Transversais , Feminino , Humanos , Imunossupressores/administração & dosagem , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Transplante Homólogo
4.
PLoS One ; 13(2): e0192151, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29474364

RESUMO

Relationships between Fragile X Mental Retardation 1 (FMR1) mRNA levels in blood and intragenic FMR1 CGG triplet expansions support the pathogenic role of RNA gain of function toxicity in premutation (PM: 55-199 CGGs) related disorders. Real-time PCR (RT-PCR) studies reporting these findings normalised FMR1 mRNA level to a single internal control gene called ß-glucuronidase (GUS). This study evaluated FMR1 mRNA-CGG correlations in 33 PM and 33 age- and IQ-matched control females using three normalisation strategies in peripheral blood mononuclear cells (PBMCs): (i) GUS as a single internal control; (ii) the mean of GUS, Eukaryotic Translation Initiation Factor 4A2 (EIF4A2) and succinate dehydrogenase complex flavoprotein subunit A (SDHA); and (iii) the mean of EIF4A2 and SDHA (with no contribution from GUS). GUS mRNA levels normalised to the mean of EIF4A2 and SDHA mRNA levels and EIF4A2/SDHA ratio were also evaluated. FMR1mRNA level normalised to the mean of EIF4A2 and SDHA mRNA levels, with no contribution from GUS, showed the most significant correlation with CGG size and the greatest difference between PM and control groups (p = 10-11). Only 15% of FMR1 mRNA PM results exceeded the maximum control value when normalised to GUS, compared with over 42% when normalised to the mean of EIF4A2 and SDHA mRNA levels. Neither GUS mRNA level normalised to the mean RNA levels of EIF4A2 and SDHA, nor to the EIF4A2/SDHA ratio were correlated with CGG size. However, greater variability in GUS mRNA levels were observed for both PM and control females across the full range of CGG repeat as compared to the EIF4A2/SDHA ratio. In conclusion, normalisation with multiple control genes, excluding GUS, can improve assessment of the biological significance of FMR1 mRNA-CGG size relationships.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Glucuronidase/genética , RNA Mensageiro/genética , Fatores de Confusão Epidemiológicos , Humanos , Reação em Cadeia da Polimerase em Tempo Real
5.
Epilepsia ; 59(2): 381-388, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29266188

RESUMO

OBJECTIVE: To investigate the significance of variation in ADGRV1 (also known as GPR98, MASS1, and VLGR1), MEF2C, and other genes at the 5q14.3 chromosomal locus in myoclonic epilepsy. METHODS: We studied the epilepsy phenotypes of 4 individuals with 5q14.3 deletion and found that all had myoclonic seizures. We then screened 6 contiguous genes at 5q14.3, MEF2C, CETN3, MBLAC2, POLR3G, LYSMD3, and ADGRV1, in a 95-patient cohort with epilepsy and myoclonic seizures. Of these genes, point mutations in MEF2C cause a phenotype involving seizures and intellectual disability. A role for ADGRV1 in epilepsy has been proposed previously, based on a recessive mutation in the Frings mouse model of audiogenic seizures, as well as a shared homologous region with another epilepsy gene, LGI1. RESULTS: Six patients from the myoclonic epilepsy cohort had likely pathogenic ultra-rare ADGRV1 variants, and statistical analysis showed that ultra-rare variants were significantly overrepresented when compared to healthy population data from the Genome Aggregation Database. Of the remaining genes, no definite pathogenic variants were identified. SIGNIFICANCE: Our data suggest that the ADGRV1 variation contributes to epilepsy with myoclonic seizures, although the inheritance pattern may be complex in many cases. In patients with 5q14.3 deletion and epilepsy, ADGRV1 haploinsufficiency likely contributes to seizure development. The latter is a shift from current thinking, as MEF2C haploinsufficiency has been considered the main cause of epilepsy in 5q14.3 deletion syndrome. In cases of 5q14.3 deletion and epilepsy, seizures likely occur due to haploinsufficiency of one or both of ADGRV1 and MEF2C.


Assuntos
Epilepsias Mioclônicas/genética , Receptores Acoplados a Proteínas G/genética , Proteínas de Ligação ao Cálcio/genética , Criança , Cromossomos Humanos Par 5/genética , Estudos de Coortes , Epilepsias Mioclônicas/complicações , Haploinsuficiência , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Fatores de Transcrição MEF2/genética , Masculino , Mutação Puntual , RNA Polimerase III/genética , Síndrome
6.
Exp Hematol ; 49: 39-47.e5, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28147232

RESUMO

Chimerism analysis has an important role in the management of allogeneic hematopoietic stem cell transplantation. It informs response to disease relapse, graft rejection, and graft-versus-host disease. We have developed a method for chimerism analysis using ubiquitous copy number variation (CNV), which has the benefit of a "negative background" against which multiple independent informative markers are quantified using digital droplet polymerase chain reaction. A panel of up to 38 CNV markers with homozygous deletion frequencies of approximately 0.4-0.6 were used. Sensitivity, precision, reproducibility, and informativity were assessed. CNV chimerism results were compared against established fluorescence in situ hybridization, single nucleotide polymorphism, and short tandem repeat-based methods with excellent correlation. Using 30 ng of input DNA per well, the limit of detection was 0.05% chimerism and the limit of quantification was 0.5% chimerism. High informativity was seen with a median of four informative markers detectable per individual in 39 recipients and 43 donor genomes studied. The strength of this approach was exemplified in a multiple donor case involving four genomes (three related). The precision, sensitivity, and informativity of this approach recommend it for use in clinical practice.


Assuntos
Variações do Número de Cópias de DNA , Transplante de Células-Tronco Hematopoéticas , Reação em Cadeia da Polimerase/métodos , Quimeras de Transplante/genética , Aloenxertos , Feminino , Humanos , Hibridização in Situ Fluorescente/métodos , Masculino , Sensibilidade e Especificidade
8.
Am J Med Genet A ; 170(12): 3327-3332, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27696642

RESUMO

CGG repeat expansion >200 within FMR1, termed full mutation (FM), has been associated with promoter methylation, consequent silencing of gene expression and fragile X syndrome (FXS)-a common cause of intellectual disability and co-morbid autism. Unmethylated premutation (55-199 repeats) and FM alleles have been associated with fragile X related tremor/ataxia syndrome (FXTAS), a late onset neurodegenerative disorder. Here we present a 33-year-old male with FXS, with white matter changes and progressive deterioration in gait with cerebellar signs consistent with probable FXTAS; there was no evidence of any other cerebellar pathology. We show that he has tissue mosaicism in blood, saliva, and buccal samples for the size and methylation of his expanded alleles and a de novo, unmethylated microdeletion. This microdeletion involves a ∼80 bp sequence in the FMR1 promoter as well as complete loss of the CGG repeat in a proportion of cells. Despite FMR1 mRNA levels in blood within the normal range, the methylation and CGG sizing results are consistent with the diagnosis of concurrent FXS and probable FXTAS. The demonstrated presence of unmethylated FM alleles would explain the manifestation of milder than expected cognitive and behavioral impairments and early onset of cerebellar ataxia. Our case suggests that individuals with FXS, who manifest symptoms of FXTAS, may benefit from more detailed laboratory testing. © 2016 Wiley Periodicals, Inc.


Assuntos
Alelos , Ataxia/diagnóstico , Ataxia/genética , Metilação de DNA , Síndrome do Cromossomo X Frágil/diagnóstico , Síndrome do Cromossomo X Frágil/genética , Estudos de Associação Genética , Mosaicismo , Deleção de Sequência , Tremor/diagnóstico , Tremor/genética , Adulto , Pré-Escolar , Variações do Número de Cópias de DNA , Proteína do X Frágil da Deficiência Intelectual/genética , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Expansão das Repetições de Trinucleotídeos
9.
Genes (Basel) ; 7(9)2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27657133

RESUMO

Mosaicism for FMR1 premutation (PM: 55-199 CGG)/full mutation (FM: >200 CGG) alleles or the presence of unmethylated FM (UFM) have been associated with a less severe fragile X syndrome (FXS) phenotype and fragile X associated tremor/ataxia syndrome (FXTAS)-a late onset neurodegenerative disorder. We describe a 38 year old male carrying a 100% methylated FM detected with Southern blot (SB), which is consistent with complete silencing of FMR1 and a diagnosis of fragile X syndrome. However, his formal cognitive scores were not at the most severe end of the FXS phenotype and he displayed tremor and ataxic gait. With the association of UFM with FXTAS, we speculated that his ataxia might be related to an undetected proportion of UFM alleles. Such UFM alleles were confirmed by more sensitive PCR based methylation testing showing FM methylation between 60% and 70% in blood, buccal, and saliva samples and real-time PCR analysis showing incomplete silencing of FMR1. While he did not meet diagnostic criteria for FXTAS based on MRI findings, the underlying cause of his ataxia may be related to UFM alleles not detected by SB, and follow-up clinical and molecular assessment are justified if his symptoms worsen.

10.
Am J Med Genet A ; 170(6): 1439-49, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26892444

RESUMO

An audit was conducted of laboratory/clinical databases of genetic tests performed between January 2003 and December 2009, and for 2014, as well as referrals to the clinical service and a specialist multidisciplinary clinic, to determine genetic testing request patterns for fragile X syndrome and associated conditions and referrals for genetic counseling/multidisciplinary management in Victoria, Australia. An expanded allele (full mutation, premutation or intermediate) was found in 3.7% of tests. Pediatricians requested ∼70% of test samples, although fewer general practitioners and more obstetricians/gynecologists ordered tests in 2014. Median age at testing for individuals with a full mutation seeking a diagnosis without a fragile X family history was 4.3 years (males) and 9.4 years (females); these ages were lower when pediatricians ordered the tests (2.1 years and 6.1 years, respectively). Individuals with a premutation were generally tested at a later age (median age: males, 33.2 years; females, 36.4 years). Logistic regression showed that a family history of ID (OR 3.28 P = 0.005, CI 1.77-5.98) was the only indication to independently increase the likelihood of a test-positive (FM or PM) result. Following testing, ∼25% of full mutation or premutation individuals may not have attended clinical services providing genetic counseling or multidisciplinary management for these families. The apparent delay in fragile X syndrome diagnosis and lack of appropriate referrals for some may result in less than optimal management for these families. These findings suggest continued need for awareness and education of health professionals around diagnosis and familial implications of fragile X syndrome and associated conditions. © 2016 Wiley Periodicals, Inc.


Assuntos
Auditoria Clínica , Síndrome do Cromossomo X Frágil/diagnóstico , Síndrome do Cromossomo X Frágil/genética , Testes Genéticos/normas , Padrões de Prática Médica , Encaminhamento e Consulta/normas , Adolescente , Adulto , Fatores Etários , Alelos , Criança , Pré-Escolar , Gerenciamento Clínico , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Aconselhamento Genético , Testes Genéticos/métodos , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mutação , Vitória , Adulto Jovem
11.
Clin Chem ; 62(2): 343-52, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26715660

RESUMO

BACKGROUND: FMR1 full mutations (FMs) (CGG expansion >200) in males mosaic for a normal (<45 CGG) or gray-zone (GZ) (45-54 CGG) allele can be missed with the standard 2-step fragile X syndrome (FXS) testing protocols, largely because the first-line PCR tests showing a normal or GZ allele are not reflexed to the second-line test that can detect FM. METHODS: We used methylation-specific quantitative melt analysis (MS-QMA) to determine the prevalence of cryptic FM alleles in 2 independent cohorts of male patients (994 from Chile and 2392 from Australia) referred for FXS testing from 2006 to 2013. All MS-QMA-positive cases were retested with commercial triplet primed PCR, methylation-sensitive Southern blot, and a methylation-specific EpiTYPER-based test. RESULTS: All 38 FMs detected with the standard 2-step protocol were detected with MS-QMA. However, MS-QMA identified methylation mosaicism in an additional 15% and 11% of patients in the Chilean and Australian cohorts, respectively, suggesting the presence of a cryptic FM. Of these additional patients, 57% were confirmed to carry cryptic expanded alleles in blood, buccal mucosa, or saliva samples. Further confirmation was provided by identifying premutation (CGG 55-199) alleles in mothers of probands with methylation-sensitive Southern blot. Neurocognitive assessments showed that low-level mosaicism for cryptic FM alleles was associated with cognitive impairment or autism. CONCLUSIONS: A substantial number of mosaic FM males who have cognitive impairment or autism are not diagnosed with the currently recommended 2-step testing protocol and can be identified with MS-QMA as a first-line test.


Assuntos
Alelos , Síndrome do Cromossomo X Frágil/genética , Técnicas Genéticas , Adolescente , Adulto , Southern Blotting , Criança , Pré-Escolar , Estudos de Coortes , Ilhas de CpG , Metilação de DNA , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mosaicismo , Reação em Cadeia da Polimerase/métodos , Adulto Jovem
12.
Expert Rev Mol Med ; 17: e13, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26132880

RESUMO

Methylation of the fragile X mental retardation 1 (FMR1) exon 1/intron 1 boundary positioned fragile X related epigenetic element 2 (FREE2), reveals skewed X-chromosome inactivation (XCI) in fragile X syndrome full mutation (FM: CGG > 200) females. XCI skewing has been also linked to abnormal X-linked gene expression with the broader clinical impact for sex chromosome aneuploidies (SCAs). In this study, 10 FREE2 CpG sites were targeted using methylation specific quantitative melt analysis (MS-QMA), including 3 sites that could not be analysed with previously used EpiTYPER system. The method was applied for detection of skewed XCI in FM females and in different types of SCA. We tested venous blood and saliva DNA collected from 107 controls (CGG < 40), and 148 FM and 90 SCA individuals. MS-QMA identified: (i) most SCAs if combined with a Y chromosome test; (ii) locus-specific XCI skewing towards the hypomethylated state in FM females; and (iii) skewed XCI towards the hypermethylated state in SCA with 3 or more X chromosomes, and in 5% of the 47,XXY individuals. MS-QMA output also showed significant correlation with the EpiTYPER reference method in FM males and females (P < 0.0001) and SCAs (P < 0.05). In conclusion, we demonstrate use of MS-QMA to quantify skewed XCI in two applications with diagnostic utility.


Assuntos
Aneuploidia , DNA/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/diagnóstico , Inativação do Cromossomo X , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Cromossomos Humanos X , Ilhas de CpG , DNA/sangue , Metilação de DNA , Éxons , Feminino , Proteína do X Frágil da Deficiência Intelectual/sangue , Síndrome do Cromossomo X Frágil/sangue , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/patologia , Expressão Gênica , Humanos , Lactente , Recém-Nascido , Íntrons , Masculino , Pessoa de Meia-Idade , Desnaturação de Ácido Nucleico , Saliva/química
13.
J Assoc Genet Technol ; 41(1): 5-11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26030083

RESUMO

Fluorescence in situ hybridization (FISH) techniques are used for the targeted investigation of microduplication, microdeletion and structural rearrangements. More recently FISH techniques using probes specific to the region of interest have been applied to confirm genomic copy number variation (CNV). However, there are limitations in the assessment of FISH signal patterns. Tandem duplication of small CNVs appear as an increased signal size when standard FISH methods are applied. As such, interpretation of signal patterns is subjective and further complicated in the presence of mosaicism. Here we describe a pre-treatment that enhances the demonstration of tandem duplication. We assessed the sensitivity to CNVs of a minimum of 120 kb in size and determined that the lower limit of detection of mosaicism is 10 percent. In contrast to some methods of chromatin extension and elongation, this technique is done using fixed cell preparations from routine cytogenetic harvesting, and can be applied to freshly harvested or stored fixed cell suspensions. This modification to standard FISH preparations has the scope to be used as a screening tool for family and prenatal investigations.

15.
Neurology ; 84(16): 1631-8, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25809302

RESUMO

OBJECTIVE: To examine the epigenetic basis of psychiatric symptoms and dysexecutive impairments in FMR1 premutation (PM: 55 to 199 CGG repeats) women. METHODS: A total of 35 FMR1 PM women aged between 22 and 55 years and 35 age- and IQ-matched women controls (CGG <45) participated in this study. All participants completed a range of executive function tests and self-reported symptoms of psychiatric disorders. The molecular measures included DNA methylation of the FMR1 CpG island in blood, presented as FMR1 activation ratio (AR), and 9 CpG sites located at the FMR1 exon1/intron 1 boundary, CGG size, and FMR1 mRNA levels. RESULTS: We show that FMR1 intron 1 methylation levels could be used to dichotomize PM women into greater and lower risk categories (p = 0.006 to 0.037; odds ratio = 14-24.8), with only FMR1 intron 1 methylation, and to a lesser extent AR, being significantly correlated with the likelihood of probable dysexecutive or psychiatric symptoms (p < 0.05). Furthermore, the significant relationships between methylation and social anxiety were found to be mediated by executive function performance, but only in PM women. FMR1 exon 1 methylation, CGG size, and FMR1 mRNA could not predict probable dysexecutive/psychiatric disorders in PM women. CONCLUSIONS: This is the first study supporting presence of specific epigenetic etiology associated with increased risk of developing comorbid dysexecutive and social anxiety symptoms in PM women. These findings could have implications for early intervention and risk estimate recommendations aimed at improving the outcomes for PM women and their families.


Assuntos
Metilação de DNA , Função Executiva/fisiologia , Proteína do X Frágil da Deficiência Intelectual/genética , Fenótipo , Transtornos Fóbicos/genética , Expansão das Repetições de Trinucleotídeos/genética , Adulto , Biomarcadores , Estudos de Coortes , Epigênese Genética/genética , Feminino , Humanos , Pessoa de Meia-Idade , Mutação/genética , Risco , Adulto Jovem
16.
Clin Chem ; 60(8): 1105-14, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24899692

RESUMO

BACKGROUND: We describe a novel approach that harnesses the ubiquity of copy number deletion polymorphisms in human genomes to definitively detect and quantify chimeric DNA in clinical samples. Unlike other molecular approaches to chimerism analysis, the copy number deletion (CND) method targets genomic loci (>50 base pairs in length) that are wholly absent from wild-type (i.e., self) background DNA sequences in a sex-independent manner. METHODS: Bespoke quantitative PCR (qPCR) CND assays were developed and validated using a series of DNA standards and chimeric plasma DNA samples collected from 2 allogeneic kidney transplant recipients and 12 pregnant women. Assay performance and informativeness were assessed using appropriate statistical methods. RESULTS: The CND qPCR assays showed high sensitivity, precision, and reliability for linear quantification of DNA chimerism down to 16 genomic equivalents (i.e., 106 pg). Fetal fraction (%) in 12 singleton male pregnancies was calculated using the CND qPCR approach, which showed closer agreement with single-nucleotide polymorphism-based massively parallel sequencing than the SRY (sex determining region Y) (Y chromosome) qPCR assay. The latter consistently underestimated the fetal fraction relative to the other methods. We also were able to measure biological changes in plasma nonself DNA concentrations in 2 renal transplant recipients. CONCLUSIONS: The CND qPCR technique is suitable for measurement of chimerism for monitoring of rejection in allogeneic organ transplantation and quantification of the cell-free fetal DNA fraction in maternal plasma samples used for noninvasive prenatal genetic testing.


Assuntos
Quimera/genética , Variações do Número de Cópias de DNA , Humanos , Limite de Detecção , Reação em Cadeia da Polimerase/métodos , Reprodutibilidade dos Testes
18.
Clin Chem ; 60(7): 963-73, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24778142

RESUMO

BACKGROUND: Standard fragile X syndrome (FXS) diagnostic tests that target methylation of the fragile X mental retardation 1 (FMR1) CpG island 5' of the CGG expansion can be used to predict severity of the disease in males from birth, but not in females. METHODS: We describe methylation specific-quantitative melt analysis (MS-QMA) that targets 10 CpG sites, with 9 within FMR1 intron 1, to screen for FXS from birth in both sexes. The novel method combines the qualitative strengths of high-resolution melt and the high-throughput, quantitative real-time PCR standard curve to provide accurate quantification of DNA methylation in a single assay. Its performance was assessed in 312 control (CGG <40), 143 premutation (PM) (CGG 56-170), 197 full mutation (FM) (CGG 200-2000), and 33 CGG size and methylation mosaic samples. RESULTS: In male and female newborn blood spots, MS-QMA differentiated FM from control alleles, with sensitivity, specificity, and positive and negative predictive values between 92% and 100%. In venous blood of FM females between 6 and 35 years of age, MS-QMA correlated most strongly with verbal IQ impairment (P = 0.002). In the larger cohort of males and females, MS-QMA correlated with reference methods Southern blot and MALDI-TOF mass spectrometry (P < 0.05), but was not significantly correlated with age. Unmethylated alleles in high-functioning FM and PM males determined by both reference methods were also unmethylated by MS-QMA. CONCLUSIONS: MS-QMA has an immediate application in FXS diagnostics, with a potential use of its quantitative methylation output for prognosis in both sexes.


Assuntos
Síndrome do Cromossomo X Frágil/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Criança , Pré-Escolar , Cognição , Estudos de Coortes , Teste em Amostras de Sangue Seco , Diagnóstico Precoce , Epigênese Genética , Feminino , Síndrome do Cromossomo X Frágil/sangue , Síndrome do Cromossomo X Frágil/genética , Humanos , Lactente , Recém-Nascido , Íntrons , Masculino , Metilação , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade
19.
PLoS One ; 9(1): e86993, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24489824

RESUMO

Pregnant women carry a mixture of cell-free DNA fragments from self and fetus (non-self) in their circulation. In recent years multiple independent studies have demonstrated the ability to detect fetal trisomies such as trisomy 21, the cause of Down syndrome, by Next-Generation Sequencing of maternal plasma. The current clinical tests based on this approach show very high sensitivity and specificity, although as yet they have not become the standard diagnostic test. Here we describe improvements to the analysis of the sequencing data by reducing GC bias and better handling of the genomic repeats. We show substantial improvements in the sensitivity of the standard trisomy 21 statistical tests, which we measure by artificially reducing read coverage. We also explore the bias stemming from the natural cleavage of plasma DNA by examining DNA motifs and position specific base distributions. We propose a model to correct this fragmentation bias and observe that incorporating this bias does not lead to any further improvements in the detection of fetal trisomy. The improved bias corrections that we demonstrate in this work can be readily adopted into existing fetal trisomy detection protocols and should also lead to improvements in sub-chromosomal copy number variation detection.


Assuntos
DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Diagnóstico Pré-Natal , Trissomia/diagnóstico , Adulto , Viés , DNA/sangue , Feminino , Feto , Testes Genéticos , Idade Gestacional , Humanos , Cariotipagem , Gravidez , Trissomia/genética
20.
Neurodegener Dis ; 14(2): 67-76, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24401315

RESUMO

BACKGROUND/AIMS: Alleles of the FMR1 gene containing small expansions of the CGG-trinucleotide repeat comprise premutation and grey-zone alleles. Premutation alleles may cause late-onset Fragile X-associated tremor/ataxia syndrome attributed to the neurotoxic effect of elevated FMR1 transcripts. Our earlier data suggested that both grey-zone and low-end premutation alleles might also play a significant role in the acquisition of the parkinsonian phenotype due to mitochondrial dysfunction caused by elevated FMR1 mRNA toxicity. These data were obtained through clinical and molecular comparisons between carriers of grey-zone/low-end premutation alleles and group-matched non-carrier controls from patients with idiopathic Parkinson's disease (iPD). We aimed to explore the relationship between grey-zone alleles, parkinsonism and white matter changes. METHODS: This study compared the extent and severity of white matter hyperintensity (WMH) on magnetic resonance imaging, using a semi-quantitative method, between 11 grey-zone/low-end premutation carriers and 20 non-carrier controls with iPD from our earlier study. Relationships between WMH scores, and cognitive and motor test scores were assessed for carriers and non-carriers. RESULTS: Supratentorial WMH scores, and tremor and ataxia motor scores were significantly higher in carriers compared with disease controls. Moreover, some associations between cognitive decline and WMH scores were specific for each respective carrier status category. CONCLUSIONS: The results support our earlier claim that grey-zone alleles contribute to the severity of parkinsonism and white matter changes.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Doença de Parkinson/genética , Doença de Parkinson/patologia , Expansão das Repetições de Trinucleotídeos , Substância Branca/patologia , Idoso , Idoso de 80 Anos ou mais , Alelos , Ataxia/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...