Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 325: 121557, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38008481

RESUMO

Alginates are valued in many industries, due to their versatile properties. These polysaccharides originate from brown algae (Phaeophyceae) and some bacteria of the Azotobacter and Pseudomonas genera, consisting of 1 â†’ 4 linked ß-d-mannuronic acid (M), and its C5-epimer α-l-guluronic acid (G). Several applications rely on a high G-content, which confers good gelling properties. Because of its high natural G-content (FG = 0.60-0.75), the alginate from Laminaria hyperborea (LH) has sustained a thriving industry in Norway. Alginates from other sources can be upgraded with mannuronan C-5 epimerases that convert M to G, and this has been demonstrated in many studies, but not applied in the seaweed industry. The present study demonstrates epimerisation directly in the process of alginate extraction from cultivated Saccharina latissima (SL) and Alaria esculenta (AE), and the lamina of LH. Unlike conventional epimerisation, which comprises multiple steps, this in-process protocol can decrease the time and costs necessary for alginate upgrading. In-process epimerisation with AlgE1 enzyme enhanced G-content and hydrogel strength in all examined species, with the greatest effect on SL (FG from 0.44 to 0.76, hydrogel Young's modulus from 22 to 34 kPa). As proof of concept, an upscaled in-process epimerisation of alginate from fresh SL was successfully demonstrated.


Assuntos
Laminaria , Phaeophyceae , Alginatos , Hidrogéis
2.
Biomolecules ; 13(9)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37759766

RESUMO

Low molecular weight alginate oligosaccharides have been shown to exhibit anti-microbial activity against a range of multi-drug resistant bacteria, including Pseudomonas aeruginosa. Previous studies suggested that the disruption of calcium (Ca2+)-DNA binding within bacterial biofilms and dysregulation of quorum sensing (QS) were key factors in these observed effects. To further investigate the contribution of Ca2+ binding, G-block (OligoG) and M-block alginate oligosaccharides (OligoM) with comparable average size DPn 19 but contrasting Ca2+ binding properties were prepared. Fourier-transform infrared spectroscopy demonstrated prolonged binding of alginate oligosaccharides to the pseudomonal cell membrane even after hydrodynamic shear treatment. Molecular dynamics simulations and isothermal titration calorimetry revealed that OligoG exhibited stronger interactions with bacterial LPS than OligoM, although this difference was not mirrored by differential reductions in bacterial growth. While confocal laser scanning microscopy showed that both agents demonstrated similar dose-dependent reductions in biofilm formation, OligoG exhibited a stronger QS inhibitory effect and increased potentiation of the antibiotic azithromycin in minimum inhibitory concentration and biofilm assays. This study demonstrates that the anti-microbial effects of alginate oligosaccharides are not purely influenced by Ca2+-dependent processes but also by electrostatic interactions that are common to both G-block and M-block structures.


Assuntos
Alginatos , Pseudomonas aeruginosa , Peso Molecular , Relação Estrutura-Atividade , Alginatos/farmacologia , Antibacterianos/farmacologia
3.
Methods Mol Biol ; 2704: 185-200, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37642845

RESUMO

This chapter describes methods for cultivation and characterization of the growth of Mycolicibacterium spp. mutants in a microbioreactor system in the presence of steroids and/or phytosterols followed by high-throughput mass spectrometry analysis to describe their ability to convert phytosterols into the target steroid androstenedione (AD). We focus on Mycolicibacterium neoaurum NRRL B-3805 ΔkstD which can convert phytosterol into androstenedione (AD) as one of its major steroid products, and mutants thereof with increased tolerance towards this end-product. By using BioLector 48-well plates with optodes at the bottom of each well, bacterial growth can be monitored online despite the turbidity of the growth medium resulting from non-dissolved phytosterol and steroid particles. To cope with the large number of samples that accumulate during growth experiments in microbioreactors and similar formats (e.g., microtiter plates), protocols for extraction and subsequent RapidFire-MS analysis are presented. This reduces the analysis time per sample to 10 s from 10 min required for regular LC-MS analysis.


Assuntos
Androstenodiona , Fitosteróis , Cromatografia Líquida , Meios de Cultura , Esteroides
4.
Methods Mol Biol ; 2704: 245-267, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37642849

RESUMO

The chapter describes the bioconversion of phytosterols into androstenedione (AD) by Mycolicibacterium spp. in shake flasks and fermenters, as well as LC-MS-based methods for analysis of phytosterols and steroid products. Phytosterols are derived as by-products of vegetable oil refining and manufacture of wood pulp. They contain the same four-ring nucleus as steroids and may be converted to high-value steroids by removing the sidechain at C17 and minor changes at other sites in the ring structure. Many bacteria, including Mycolicibacterium spp., can degrade phytosterols. Mutants of Mycolicibacterium spp. unable of ring cleavage can, when growing on phytosterols, accumulate the steroid intermediates androstenedione (AD) and androstadienedione (ADD). The practical challenge with microbial conversion of phytosterols to steroids is that both the substrate and the product are virtually insoluble in water. In addition, some steroids, notably ADD, may be toxic for the cells. Two main strategies have been employed to overcome this challenge: the use of two-phase systems and the addition of chemically modified cyclodextrins. The latter method is used here. Defined cultivation and bioconversion media for both shake flask and fermenter are given, as well as hints how to minimize the practical problems due to the water-insoluble phytosterol. Sampling, sample extraction, and quantification of substrates and products using LC-MS analysis are described.


Assuntos
Androstenodiona , Fitosteróis , Humanos , Reatores Biológicos , Núcleo Celular , Tremor , Água
5.
Essays Biochem ; 67(3): 615-627, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36876890

RESUMO

Alginate is a polysaccharide consisting of ß-D-mannuronate (M) and α-L-guluronate (G) produced by brown algae and some bacterial species. Alginate has a wide range of industrial and pharmaceutical applications, owing mainly to its gelling and viscosifying properties. Alginates with high G content are considered more valuable since the G residues can form hydrogels with divalent cations. Alginates are modified by lyases, acetylases, and epimerases. Alginate lyases are produced by alginate-producing organisms and by organisms that use alginate as a carbon source. Acetylation protects alginate from lyases and epimerases. Following biosynthesis, alginate C-5 epimerases convert M to G residues at the polymer level. Alginate epimerases have been found in brown algae and alginate-producing bacteria, predominantly Azotobacter and Pseudomonas species. The best characterised epimerases are the extracellular family of AlgE1-7 from Azotobacter vinelandii(Av). AlgE1-7 all consist of combinations of one or two catalytic A-modules and one to seven regulatory R-modules, but even though they are sequentially and structurally similar, they create different epimerisation patterns. This makes the AlgE enzymes promising for tailoring of alginates to have the desired properties. The present review describes the current state of knowledge regarding alginate-active enzymes with focus on epimerases, characterisation of the epimerase reaction, and how alginate epimerases can be used in alginate production.


Assuntos
Azotobacter vinelandii , Liases , Racemases e Epimerases , Alginatos/química , Carboidratos Epimerases/química
6.
Appl Microbiol Biotechnol ; 107(9): 2871-2886, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36949330

RESUMO

FK-506 is a potent immunosuppressive macrocyclic polyketide with growing pharmaceutical interest, produced by Streptomyces tsukubaensis. However, due to low levels synthesized by the wild-type strain, biotechnological production of FK-506 is rather limited. Optimization strategies to enhance the productivity of S. tsukubaensis by means of genetic engineering have been established. In this work primarily global regulatory aspects with respect to the FK-506 biosynthesis have been investigated with the focus on the global Crp (cAMP receptor protein) regulator. In expression analyses and protein-DNA interaction studies, the role of Crp during FK-506 biosynthesis was elucidated. Overexpression of Crp resulted in two-fold enhancement of FK-506 production in S. tsukubaensis under laboratory conditions. Further optimizations using fermentors proved that the strategy described in this study can be transferred to industrial scale, presenting a new approach for biotechnological FK-506 production. KEY POINTS: • The role of the global Crp (cAMP receptor protein) regulator for FK-506 biosynthesis in S. tsukubaensis was demonstrated • Crp overexpression in S. tsukubaensis was applied as an optimization strategy to enhance FK-506 and FK-520 production resulting in two-fold yield increase.


Assuntos
Streptomyces , Tacrolimo , Tacrolimo/metabolismo , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/metabolismo , Imunossupressores/metabolismo , Streptomyces/genética , Streptomyces/metabolismo
7.
Appl Microbiol Biotechnol ; 107(2-3): 691-717, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36595038

RESUMO

Plant biomass is a promising substrate for biorefinery, as well as a source of bioactive compounds, platform chemicals, and precursors with multiple industrial applications. These applications depend on the hydrolysis of its recalcitrant structure. However, the effective biological degradation of plant cell walls requires several enzymatic groups acting synergistically, and novel enzymes are needed in order to achieve profitable industrial hydrolysis processes. In the present work, a feruloyl esterase (FAE) activity screening of Penicillium spp. strains revealed a promising candidate (Penicillium rubens Wisconsin 54-1255; previously Penicillium chrysogenum), where two FAE-ORFs were identified and subsequently overexpressed. Enzyme extracts were analyzed, confirming the presence of FAE activity in the respective gene products (PrFaeA and PrFaeB). PrFaeB-enriched enzyme extracts were used to determine the FAE activity optima (pH 5.0 and 50-55 °C) and perform proteome analysis by means of MALDI-TOF/TOF mass spectrometry. The studies were completed with the determination of other lignocellulolytic activities, an untargeted metabolite analysis, and upscaled FAE production in stirred tank reactors. The findings described in this work present P. rubens as a promising lignocellulolytic enzyme producer. KEY POINTS: • Two Penicillium rubens ORFs were first confirmed to have feruloyl esterase activity. • Overexpression of the ORFs produced a novel P. rubens strain with improved activity. • The first in-depth proteomic study of a P. rubens lignocellulolytic extract is shown.


Assuntos
Penicillium chrysogenum , Penicillium , Penicillium chrysogenum/metabolismo , Proteômica/métodos , Penicillium/metabolismo , Extratos Vegetais/metabolismo , Proteínas Fúngicas/metabolismo
8.
Protein Sci ; 32(2): e4556, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36571497

RESUMO

For improved control of biomaterial property design, a better understanding of complex coacervation involving anionic polysaccharides and proteins is needed. Here, we address the initial steps in condensate formation of ß-lactoglobulin A (ß-LgA) with nine defined alginate oligosaccharides (AOSs) and describe their multivalent interactions in structural detail. Binding of AOSs containing four, five, or six uronic acid residues (UARs), either all mannuronate (M), all guluronate (G), or alternating M and G embodying the block structural components of alginates, was characterized by isothermal titration calorimetry, nuclear magnetic resonance spectroscopy (NMR), and molecular docking. ß-LgA was highly multivalent exhibiting binding stoichiometries decreasing from five to two AOSs with increasing degree of polymerization (DP) and similar affinities in the mid micromolar range. The different AOS binding sites on ß-LgA were identified by NMR chemical shift perturbation analyses and showed diverse compositions of charged, polar and hydrophobic residues. Distinct sites for the shorter AOSs merged to accommodate longer AOSs. The AOSs bound dynamically to ß-LgA, as concluded from saturation transfer difference and 1 H-ligand-targeted NMR analyses. Molecular docking using Glide within the Schrödinger suite 2016-1 revealed the orientation of AOSs to only vary slightly at the preferred ß-LgA binding site resulting in similar XP glide scores. The multivalency coupled with highly dynamic AOS binding with lack of confined conformations in the ß-LgA complexes may help explain the first steps toward disordered ß-LgA alginate coacervate structures.


Assuntos
Alginatos , Lactoglobulinas , Lactoglobulinas/química , Alginatos/química , Alginatos/metabolismo , Simulação de Acoplamento Molecular , Sítios de Ligação , Polissacarídeos , Oligossacarídeos
9.
J Appl Microbiol ; 133(5): 3113-3125, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35947058

RESUMO

AIMS: The aim of this study was to develop a high-throughput robotic microtiter plate-based screening assay for Candida albicans, optimizing growth conditions to replicate the filamentous biofilm growth found in vivo, and subsequently, to demonstrate the assay by evaluating the effect of nutritional drinks alone and in combination with the antifungal amphotericin B (AmB). METHODS AND RESULTS: Candida albicans cultured in a defined growth medium showed filamentous growth in microcolonies, mimicking the morphology of oral mucosal disease (oral candidiasis). Addition of nutrient drinks containing fruit juices, fish oil and whey protein to the medium resulted in changed morphology and promoted growth as free yeast cells and with weak biofilm structures. Minimum inhibitory concentration of AmB on the biofilms was 0.25 µg ml-1 , and this was eightfold reduced (0.0038 µg ml-1 ) in the presence of the nutritional drinks. CONCLUSIONS: The established assay demonstrated applicability for screening of antifungal and anti-biofilm effects of bioactive substances on C. albicans biofilm with clinically relevant morphology. SIGNIFICANCE AND IMPACT OF THE STUDY: Candida albicans is the causative agent of the majority of fungal infections globally. The filamentous morphology of C. albicans and the ability to form biofilm are traits known to increase virulence and resistance towards antifungals. This study describes the development of a plate-based in vitro screening method mimicking the filamentous morphology of C. albicans found in vivo. The assay established can thus facilitate efficient antifungal drug discovery and development.


Assuntos
Anfotericina B , Candida albicans , Anfotericina B/farmacologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Proteínas do Soro do Leite/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana , Óleos de Peixe/farmacologia
10.
Front Plant Sci ; 13: 837891, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734252

RESUMO

Alginates are linear polysaccharides produced by brown algae and some bacteria and are composed of ß-D-mannuronic acid (M) and α-L-guluronic acid (G). Alginate has numerous present and potential future applications within industrial, medical and pharmaceutical areas and G rich alginates are traditionally most valuable and frequently used due to their gelling and viscosifying properties. Mannuronan C-5 epimerases are enzymes converting M to G at the polymer level during the biosynthesis of alginate. The Azotobacter vinelandii epimerases AlgE1-AlgE7 share a common structure, containing one or two catalytic A-modules (A), and one to seven regulatory R-modules (R). Despite the structural similarity of the epimerases, they create different M-G patterns in the alginate; AlgE4 (AR) creates strictly alternating MG structures whereas AlgE1 (ARRRAR) and AlgE6 (ARRR) create predominantly G-blocks. These enzymes are therefore promising tools for producing in vitro tailor-made alginates. Efficient in vitro epimerization of alginates requires availability of recombinantly produced alginate epimerases, and for this purpose the methylotrophic yeast Hansenula polymorpha is an attractive host organism. The present study investigates whether H. polymorpha is a suitable expression system for future large-scale production of AlgE1, AlgE4, and AlgE6. H. polymorpha expression strains were constructed using synthetic genes with reduced repetitive sequences as well as optimized codon usage. High cell density cultivations revealed that the largest epimerases AlgE1 (147 kDa) and AlgE6 (90 kDa) are subject to proteolytic degradation by proteases secreted by the yeast cells. However, degradation could be controlled to a large extent either by co-expression of chaperones or by adjusting cultivation conditions. The smaller AlgE4 (58 kDa) was stable under all tested conditions. The results obtained thus point toward a future potential for using H. polymorpha in industrial production of mannuronan C-5 epimerases for in vitro tailoring of alginates.

11.
Microorganisms ; 10(6)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35744767

RESUMO

Rotting wood is inhabited by a large diversity of bacteria, fungi, and insects with complex environmental relationships. The aim of this work was to study the composition of the microbiota (bacteria and fungi) in decaying wood from a northwest Spanish forest as a source of industrially relevant microorganisms. The analyzed forest is situated in a well-defined biogeographic area combining Mediterranean and temperate macrobioclimates. Bacterial diversity, determined by metagenome analyses, was higher than fungal heterogeneity. However, a total of 194 different cultivable bacterial isolates (mainly Bacillaceae, Streptomycetaceae, Paenibacillaceae, and Microbacteriaceae) were obtained, in contrast to 343 fungal strains (mainly Aspergillaceae, Hypocreaceae, and Coniochaetaceae). Isolates traditionally known as secondary metabolite producers, such as Actinobacteria and members of the Penicillium genus, were screened for their antimicrobial activity by the detection of antibiotic biosynthetic clusters and competitive bioassays against fungi involved in wood decay. In addition, the ability of Penicillium isolates to degrade cellulose and release ferulic acid from wood was also examined. These results present decaying wood as an ecologically rich niche and a promising source of biotechnologically interesting microorganisms.

12.
Appl Environ Microbiol ; 88(3): e0183621, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34878812

RESUMO

The structure and functional properties of alginates are dictated by the monomer composition and molecular weight distribution. Mannuronan C-5-epimerases determine the monomer composition by catalyzing the epimerization of ß-d-mannuronic acid (M) residues into α-l-guluronic acid (G) residues. The molecular weight is affected by alginate lyases, which catalyze a ß-elimination mechanism that cleaves alginate chains. The reaction mechanisms for the epimerization and lyase reactions are similar, and some enzymes can perform both reactions. These dualistic enzymes share high sequence identity with mannuronan C-5-epimerases without lyase activity. The mechanism behind their activity and the amino acid residues responsible for it are still unknown. We investigate mechanistic determinants involved in the bifunctional epimerase and lyase activity of AlgE7 from Azotobacter vinelandii. Based on sequence analyses, a range of AlgE7 variants were constructed and subjected to activity assays and product characterization by nuclear magnetic resonance (NMR) spectroscopy. Our results show that calcium promotes lyase activity, whereas NaCl reduces the lyase activity of AlgE7. By using defined polymannuronan (polyM) and polyalternating alginate (polyMG) substrates, the preferred cleavage sites of AlgE7 were found to be M|XM and G|XM, where X can be either M or G. From the study of AlgE7 mutants, R148 was identified as an important residue for the lyase activity, and the point mutant R148G resulted in an enzyme with only epimerase activity. Based on the results obtained in the present study, we suggest a unified catalytic reaction mechanism for both epimerase and lyase activities where H154 functions as the catalytic base and Y149 functions as the catalytic acid. IMPORTANCE Postharvest valorization and upgrading of algal constituents are promising strategies in the development of a sustainable bioeconomy based on algal biomass. In this respect, alginate epimerases and lyases are valuable enzymes for tailoring the functional properties of alginate, a polysaccharide extracted from brown seaweed with numerous applications in food, medicine, and material industries. By providing a better understanding of the catalytic mechanism and of how the two enzyme actions can be altered by changes in reaction conditions, this study opens further applications of bacterial epimerases and lyases in the enzymatic tailoring of alginate polymers.


Assuntos
Azotobacter vinelandii , Alginatos/metabolismo , Azotobacter vinelandii/genética , Carboidratos Epimerases/química , Ácidos Hexurônicos/metabolismo , Polissacarídeo-Liases/metabolismo
13.
Vaccines (Basel) ; 9(1)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435503

RESUMO

Francisellosis in fish is caused by the facultative intracellular Gram-negative bacterial pathogens Francisella noatunensis ssp. noatunensis and Francisella orientalis. The disease is affecting both farmed and wild fish worldwide and no commercial vaccines are currently available. In this study, we tested isolated membrane vesicles (MVs) as possible vaccine candidates based on previous trials in zebrafish (Danio rerio) indicating promising vaccine efficacy. Here, the MV vaccine-candidates were tested in their natural hosts, Atlantic cod (Gadus morhua L.) and Nile tilapia (Oreochromis niloticus). Injection of MVs did not display any toxicity or other negative influence on the fish and gene expression analysis indicated an influence on the host immune response. However, unlike in other tested fish species, a protective immunity following vaccine application and immunization period could not be detected in the Atlantic cod or tilapia. Further in vivo studies are required to achieve a better understanding of the development of immunological memory in different fish species.

14.
Biotechnol Biofuels ; 14(1): 34, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33516261

RESUMO

BACKGROUND: Butanol (n-butanol) has been gaining attention as a renewable energy carrier and an alternative biofuel with superior properties to the most widely used ethanol. We performed 48 anaerobic fermentations simultaneously with glucose and xylose as representative lignocellulosic sugars by Clostridium beijerinckii NCIMB 8052 in BioLector® microbioreactors to understand the effect of different sugar mixtures on fermentation and to demonstrate the applicability of the micro-cultivation system for high-throughput anaerobic cultivation studies. We then compared the results to those of similar cultures in serum flasks to provide insight into different setups and measurement methods. RESULTS: ANOVA results showed that the glucose-to-xylose ratio affects both growth and production due to Carbon Catabolite Repression. The study demonstrated successful use of BioLector® system for the first time for screening several media and sugar compositions under anaerobic conditions by using online monitoring of cell mass and pH in real-time and at unprecedented time-resolution. Fermentation products possibly interfered with dissolved oxygen (DO) measurements, which require a careful interpretation of DO monitoring results. CONCLUSIONS: The statistical approach to evaluate the microbioreactor setup, and information obtained in this study will support further research in bioreactor and bioprocess design, which are very important aspects of industrial fermentations of lignocellulosic biomass.

15.
Appl Environ Microbiol ; 87(6)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33397696

RESUMO

Enzymatic depolymerization of seaweed polysaccharides is gaining interest for the production of functional oligosaccharides and fermentable sugars. Herein, we describe a thermostable alginate lyase that belongs to polysaccharide lyase family 17 (PL17) and was derived from an Arctic Mid-Ocean Ridge (AMOR) metagenomics data set. This enzyme, AMOR_PL17A, is a thermostable exolytic oligoalginate lyase (EC 4.2.2.26), which can degrade alginate, poly-ß-d-mannuronate, and poly-α-l-guluronate within a broad range of pHs, temperatures, and salinity conditions. Site-directed mutagenesis showed that tyrosine Y251, previously suggested to act as a catalytic acid, indeed is essential for catalysis, whereas mutation of tyrosine Y446, previously proposed to act as a catalytic base, did not affect enzyme activity. The observed reaction products are protonated and deprotonated forms of the 4,5-unsaturated uronic acid monomer, Δ, two hydrates of DEH (4-deoxy-l-erythro-5-hexulosuronate), which are formed after ring opening, and, finally, two epimers of a 5-member hemiketal called 4-deoxy-d-manno-hexulofuranosidonate (DHF), formed through intramolecular cyclization of hydrated DEH. The detection and nuclear magnetic resonance (NMR) assignment of these hemiketals refine our current understanding of alginate degradation.IMPORTANCE The potential markets for seaweed-derived products and seaweed processing technologies are growing, yet commercial enzyme cocktails for complete conversion of seaweed to fermentable sugars are not available. Such an enzyme cocktail would require the catalytic properties of a variety of different enzymes, where fucoidanases, laminarinases, and cellulases together with endo- and exo-acting alginate lyases would be the key enzymes. Here, we present an exo-acting alginate lyase that efficiently produces monomeric sugars from alginate. Since it is only the second characterized exo-acting alginate lyase capable of degrading alginate at a high industrially relevant temperature (≥60°C), this enzyme may be of great biotechnological and industrial interest. In addition, in-depth NMR-based structural elucidation revealed previously undescribed rearrangement products of the unsaturated monomeric sugars generated from exo-acting lyases. The insight provided by the NMR assignment of these products facilitates future assessment of product formation by alginate lyases.


Assuntos
Alginatos/metabolismo , Polissacarídeo-Liases/metabolismo , DNA de Plantas , Metagenômica , Picea , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polissacarídeo-Liases/química , Polissacarídeo-Liases/genética , Temperatura
16.
Mar Drugs ; 18(11)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218095

RESUMO

Alginates are one of the major polysaccharide constituents of marine brown algae in commercial manufacturing. However, the content and composition of alginates differ according to the distinct parts of these macroalgae and have a direct impact on the concentration of guluronate and subsequent commercial value of the final product. The Azotobacter vinelandii mannuronan C-5 epimerases AlgE1 and AlgE4 were used to determine their potential value in tailoring the production of high guluronate low-molecular-weight alginates from two sources of high mannuronic acid alginates, the naturally occurring harvested brown algae (Ascophyllum nodosum, Durvillea potatorum, Laminaria hyperborea and Lessonia nigrescens) and a pure mannuronic acid alginate derived from fermented production of the mutant strain of Pseudomonas fluorescens NCIMB 10,525. The mannuronan C-5 epimerases used in this study increased the content of guluronate from 32% up to 81% in both the harvested seaweed and bacterial fermented alginate sources. The guluronate-rich alginate oligomers subsequently derived from these two different sources showed structural identity as determined by proton nuclear magnetic resonance (1H NMR), high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and size-exclusion chromatography with online multi-angle static laser light scattering (SEC-MALS). Functional identity was determined by minimum inhibitory concentration (MIC) assays with selected bacteria and antibiotics using the previously documented low-molecular-weight guluronate enriched alginate OligoG CF-5/20 as a comparator. The alginates produced using either source showed similar antibiotic potentiation effects to the drug candidate OligoG CF-5/20 currently in development as a mucolytic and anti-biofilm agent. These findings clearly illustrate the value of using epimerases to provide an alternative production route for novel low-molecular-weight alginates.


Assuntos
Alginatos/farmacologia , Antibacterianos/farmacologia , Carboidratos Epimerases/metabolismo , Fermentação , Ácidos Hexurônicos/farmacologia , Phaeophyceae/enzimologia , Pseudomonas fluorescens/enzimologia , Alga Marinha/enzimologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/crescimento & desenvolvimento , Alginatos/metabolismo , Antibacterianos/metabolismo , Ascophyllum/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carboidratos Epimerases/genética , Ácidos Hexurônicos/metabolismo , Microbiologia Industrial , Laminaria/enzimologia , Testes de Sensibilidade Microbiana , Peso Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas fluorescens/genética
17.
ACS Omega ; 5(8): 4352-4361, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32149266

RESUMO

Alginate is a linear copolymer composed of 1→4 linked ß-d-mannuronic acid (M) and its epimer α-l-guluronic acid (G). The polysaccharide is first produced as homopolymeric mannuronan and subsequently, at the polymer level, C-5 epimerases convert M residues to G residues. The bacterium Azotobacter vinelandii encodes a family of seven secreted and calcium ion-dependent mannuronan C-5 epimerases (AlgE1-AlgE7). These epimerases consist of two types of structural modules: the A-modules, which contain the catalytic site, and the R-modules, which influence activity through substrate and calcium binding. In this study, we rationally designed new hybrid mannuronan C-5 epimerases constituting the A-module from AlgE6 and the R-module from AlgE4. This led to a better understanding of the molecular mechanism determining differences in MG- and GG-block-forming properties of the enzymes. A long loop with either tyrosine or phenylalanine extruding from the ß-helix of the enzyme proved essential in defining the final alginate block structure, probably by affecting substrate binding. Normal mode analysis of the A-module from AlgE6 supports the results.

18.
Int J Mol Sci ; 20(23)2019 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-31771245

RESUMO

Fighting bacterial resistance is one of the concerns in modern days, as antibiotics remain the main resource of bacterial control. Data shows that for every antibiotic developed, there is a microorganism that becomes resistant to it. Natural polymers, as the source of antibacterial agents, offer a new way to fight bacterial infection. The advantage over conventional synthetic antibiotics is that natural antimicrobial agents are biocompatible, non-toxic, and inexpensive. Chitosan is one of the natural polymers that represent a very promising source for the development of antimicrobial agents. In addition, chitosan is biodegradable, non-toxic, and most importantly, promotes wound healing, features that makes it suitable as a starting material for wound dressings. This paper reviews the antimicrobial properties of chitosan and describes the mechanisms of action toward microbial cells as well as the interactions with mammalian cells in terms of wound healing process. Finally, the applications of chitosan as a wound-dressing material are discussed along with the current status of chitosan-based wound dressings existing on the market.


Assuntos
Anti-Infecciosos/química , Bandagens , Quitosana/química , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Parede Celular/efeitos dos fármacos , Quitosana/metabolismo , Quitosana/farmacologia , DNA Bacteriano/metabolismo , Fungos/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Cicatrização/efeitos dos fármacos
19.
J Biol Chem ; 294(50): 19349-19364, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31656228

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) catalyze oxidative cleavage of recalcitrant polysaccharides such as cellulose and chitin and play an important role in the enzymatic degradation of biomass. Although it is clear that these monocopper enzymes have extended substrate-binding surfaces for interacting with their fibrous substrates, the structural determinants of LPMO substrate specificity remain largely unknown. To gain additional insight into substrate specificity in LPMOs, here we generated a mutant library of a cellulose-active family AA10 LPMO from Streptomyces coelicolor A3(2) (ScLPMO10C, also known as CelS2) having multiple substitutions at five positions on the substrate-binding surface that we identified by sequence comparisons. Screening of this library using a newly-developed MS-based high-throughput assay helped identify multiple enzyme variants that contained four substitutions and exhibited significant chitinolytic activity and a concomitant decrease in cellulolytic activity. The chitin-active variants became more rapidly inactivated during catalysis than a natural chitin-active AA10 LPMO, an observation likely indicative of suboptimal substrate binding leading to autocatalytic oxidative damage of these variants. These results reveal several structural determinants of LPMO substrate specificity and underpin the notion that productive substrate binding by these enzymes is complex, depending on a multitude of amino acids located on the substrate-binding surface.


Assuntos
Celulose/metabolismo , Quitina/metabolismo , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Engenharia de Proteínas , Streptomyces coelicolor/enzimologia , Oxigenases de Função Mista/genética , Modelos Moleculares , Especificidade por Substrato
20.
Biomacromolecules ; 20(4): 1613-1622, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30844259

RESUMO

With the present accessibility of algal raw material, microbial alginates as a source for strong gelling material are evaluated as an alternative for advanced applications. Recently, we have shown that alginate from algal sources all contain a fraction of very long G-blocks (VLG), that is, consecutive sequences of guluronic acid (G) residues of more than 100 residues. By comparing the gelling properties of these materials with in vitro epimerized polymannuronic acid (poly-M) with shorter G-blocks, but comparable with the G-content, we could demonstrate that VLG have a large influence on gelling properties. Hypothesized to function as reinforcement bars, VLG prevents the contraction of the gels during formation (syneresis) and increases the Young's modulus (strength of the gel). Here we report that these VLG structures are also present in alginates from Azotobacter vinelandii and that these polymers consequently form stable, low syneretic gels with calcium, comparable in mechanical strength to algal alginates with the similar monomeric composition. The bacterium expresses seven different extracellular mannuronan epimerases (AlgE1-AlgE7), of which only the bifunctional epimerase AlgE1 seems to be able to generate the long G-blocks when acting on poly-M. The data implies evidence for a processive mode of action and the necessity of two catalytic sites to obtain the observed epimerization pattern. Furthermore, poly-M epimerized with AlgE1 in vitro form gels with comparable or higher rigidity and gel strength than gels made from brown seaweed alginate with matching G-content. These findings strengthen the viability of commercial alginate production from microbial sources.


Assuntos
Alginatos/metabolismo , Azotobacter vinelandii/metabolismo , Proteínas de Bactérias/metabolismo , Carboidratos Epimerases/metabolismo , Ácidos Hexurônicos/metabolismo , Azotobacter vinelandii/genética , Proteínas de Bactérias/genética , Carboidratos Epimerases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...