Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropsychopharmacology ; 46(4): 799-808, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33059355

RESUMO

Dysregulation of the glutamatergic system and its receptors in medial prefrontal cortex (mPFC) has been implicated in major depressive disorder. Recent preclinical studies have shown that enhancing NMDA receptor (NMDAR) activity can exert rapid antidepressant-like effects. AGN-241751, an NMDAR positive allosteric modulator (PAM), is currently being tested as an antidepressant in clinical trials, but the mechanism and NMDAR subunit(s) mediating its antidepressant-like effects are unknown. We therefore used molecular, biochemical, and electrophysiological approaches to examine the cell-type-specific role of GluN2B-containing NMDAR in mediating antidepressant-like behavioral effects of AGN-241751. We demonstrate that AGN-241751 exerts antidepressant-like effects and reverses behavioral deficits induced by chronic unpredictable stress in mice. AGN-241751 treatment enhances NMDAR activity of excitatory and parvalbumin-inhibitory neurons in mPFC, activates Akt/mTOR signaling, and increases levels of synaptic proteins crucial for synaptic plasticity in the prefrontal cortex. Furthermore, cell-type-specific knockdown of GluN2B-containing NMDARs in mPFC demonstrates that GluN2B subunits on excitatory, but not inhibitory, neurons are necessary for antidepressant-like effects of AGN-241751. Together, these results demonstrate antidepressant-like actions of the NMDAR PAM AGN-241751 and identify GluN2B on excitatory neurons of mPFC as initial cellular trigger underlying these behavioral effects.


Assuntos
Transtorno Depressivo Maior , Receptores de N-Metil-D-Aspartato , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Camundongos , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
2.
Mol Psychiatry ; 26(9): 5097-5111, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32488125

RESUMO

Both the NMDA receptor (NMDAR) positive allosteric modulator (PAM), and antagonist, can exert rapid antidepressant effects as shown in several animal and human studies. However, how this bidirectional modulation of NMDARs causes similar antidepressant effects remains unknown. Notably, the initial cellular trigger, specific cell-type(s), and subunit(s) of NMDARs mediating the antidepressant-like effects of a PAM or an antagonist have not been identified. Here, we used electrophysiology, microdialysis, and NMR spectroscopy to evaluate the effect of a NMDAR PAM (rapastinel) or NMDAR antagonist, ketamine on NMDAR function and disinhibition-mediated glutamate release. Further, we used cell-type specific knockdown (KD), pharmacological, and behavioral approaches to dissect the cell-type specific role of GluN2B, GluN2A, and dopamine receptor subunits in the actions of NMDAR PAM vs. antagonists. We demonstrate that rapastinel directly enhances NMDAR activity on principal glutamatergic neurons in medial prefrontal cortex (mPFC) without any effect on glutamate efflux, while ketamine blocks NMDAR on GABA interneurons to cause glutamate efflux and indirect activation of excitatory synapses. Behavioral studies using cell-type-specific KD in mPFC demonstrate that NMDAR-GluN2B KD on Camk2a- but not Gad1-expressing neurons blocks the antidepressant effects of rapastinel. In contrast, GluN2B KD on Gad1- but not Camk2a-expressing neurons blocks the actions of ketamine. The results also demonstrate that Drd1-expressing pyramidal neurons in mPFC mediate the rapid antidepressant actions of ketamine and rapastinel. Together, these results demonstrate unique initial cellular triggers as well as converging effects on Drd1-pyramidal cell signaling that underlie the antidepressant actions of NMDAR-positive modulation vs. NMDAR blockade.


Assuntos
Ketamina , Receptores de N-Metil-D-Aspartato , Animais , Antidepressivos/farmacologia , Humanos , Interneurônios/metabolismo , Ketamina/farmacologia , Córtex Pré-Frontal/metabolismo , Células Piramidais/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
3.
Eur J Neurosci ; 51(7): 1676-1696, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31418946

RESUMO

Humans frequently perform tasks collaboratively in daily life. Collaborating with others may or may not result in higher task performance than if one were to complete the task alone (i.e., a collective benefit). A recent study on collective benefits in perceptual decision-making showed that dyad members with similar individual performances attain collective benefit. However, little is known about the physiological basis of these results. Here, we replicate this earlier work and also investigate the neurophysiological correlates of decision-making using EEG. In a two-interval forced-choice task, co-actors individually indicated presence of a target stimulus with a higher contrast and then indicated their confidence on a rating scale. Viewing the individual ratings, dyads made a joint decision. Replicating earlier work, we found a positive correlation between the similarity of individual performances and collective benefit. We analyzed event-related potentials (ERPs) in three phases (i.e., stimulus onset, response and feedback) using explorative cluster mass permutation tests. At stimulus onset, ERPs were significantly linearly related to our manipulation of contrast differences, validating our manipulation of task difficulty. For individual and joint responses, we found a significant centro-parietal error-related positivity for correct versus incorrect responses, which suggests that accuracy is already evaluated at the response level. At feedback presentation, we found a significant late positive fronto-central potential elicited by incorrect joint responses. In sum, these results demonstrate that response- and feedback-related components elicited by an error-monitoring system differentially integrate conflicting information exchanged during the joint decision-making process.


Assuntos
Tomada de Decisões , Potenciais Evocados , Eletroencefalografia , Humanos , Análise e Desempenho de Tarefas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA