Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 33(Pt 1): 119-23, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15667281

RESUMO

The obligately anaerobic ammonium oxidation (anammox) reaction with nitrite as primary electron acceptor is catalysed by the planctomycete-like bacteria Brocadia anammoxidans, Kuenenia stuttgartiensis and Scalindua sorokinii. The anammox bacteria use a complex reaction mechanism involving hydrazine as an intermediate. They have a unique prokaryotic organelle, the anammoxosome, surrounded by ladderane lipids, which exclusively contains the hydrazine oxidoreductase as the major protein to combine nitrite and ammonia in a one-to-one fashion. In addition to the peculiar microbiology, anammox was shown to be very important in the oceanic nitrogen cycle, and proved to be a very good alternative for treatment of high-strength nitrogenous waste streams. With the assembly of the K. stuttgartiensis genome at Genoscope, Evry, France, the anammox reaction has entered the genomic and proteomic era, enabling the elucidation of many intriguing aspects of this fascinating microbial process.


Assuntos
Compostos de Amônio Quaternário/metabolismo , Anaerobiose , Oxirredução
2.
Appl Microbiol Biotechnol ; 63(2): 107-14, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12955353

RESUMO

Recently, two fresh water species, " Candidatus Brocadia anammoxidans" and " Candidatus Kuenenia stuttgartiensis", and one marine species, " Candidatus Scalindua sorokinii", of planctomycete anammox bacteria have been identified. " Candidatus Scalindua sorokinii" was discovered in the Black Sea, and contributed substantially to the loss of fixed nitrogen. All three species contain a unique organelle--the anammoxosome--in their cytoplasm. The anammoxosome contains the hydrazine/hydroxylamine oxidoreductase enzyme, and is thus the site of anammox catabolism. The anammoxosome is surrounded by a very dense membrane composed almost exclusively of linearly concatenated cyclobutane-containing lipids. These so-called 'ladderanes' are connected to the glycerol moiety via both ester and ether bonds. In natural and man-made ecosystems, anammox bacteria can cooperate with aerobic ammonium-oxidising bacteria, which protect them from harmful oxygen, and provide the necessary nitrite. The cooperation of these two groups of ammonium-oxidising bacteria is the microbial basis for a sustainable one reactor system, CANON (completely autotrophic nitrogen-removal over nitrite) to remove ammonia from high strength wastewater.


Assuntos
Bactérias Anaeróbias/metabolismo , Água Doce/microbiologia , Compostos de Amônio Quaternário/metabolismo , Água do Mar/microbiologia , Anaerobiose , Reatores Biológicos , Oxirredução
3.
J Biol Chem ; 274(20): 13999-4005, 1999 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-10318812

RESUMO

It has previously been established that sequences at the C termini of polypeptide substrates are critical for efficient hydrolysis by the ClpP/ClpX ATP-dependent protease. We report for the bacteriophage lambda O replication protein, however, that N-terminal sequences play the most critical role in facilitating proteolysis by ClpP/ClpX. The N-terminal portion of lambda O is degraded at a rate comparable with that of wild type O protein, whereas the C-terminal domain of O is hydrolyzed at least 10-fold more slowly. Consistent with these results, deletion of the first 18 amino acids of lambda O blocks degradation of the N-terminal domain, whereas proteolysis of the O C-terminal domain is only slightly diminished as a result of deletion of the C-terminal 15 amino acids. We demonstrate that ClpX retains its capacity to bind to the N-terminal domain following removal of the first 18 amino acids of O. However, ClpX cannot efficiently promote the ATP-dependent binding of this truncated O polypeptide to ClpP, the catalytic subunit of the ClpP/ClpX protease. Based on our results with lambda O protein, we suggest that two distinct structural elements may be required in substrate polypeptides to enable efficient hydrolysis by the ClpP/ClpX protease: (i) a ClpX-binding site, which may be located remotely from substrate termini, and (ii) a proper N- or C-terminal sequence, whose exposure on the substrate surface may be induced by the binding of ClpX.


Assuntos
Adenosina Trifosfatases/metabolismo , Bacteriófago lambda/fisiologia , Serina Endopeptidases/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , Sequência de Aminoácidos , Bacteriófago lambda/metabolismo , Sítios de Ligação , Endopeptidase Clp , Ensaio de Imunoadsorção Enzimática , Hidrólise , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...