Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 433(2): 166721, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33227310

RESUMO

Protein self-assembly is a common and essential biological phenomenon, and bacterial microcompartments present a promising model system to study this process. Bacterial microcompartments are large, protein-based organelles which natively carry out processes important for carbon fixation in cyanobacteria and the survival of enteric bacteria. These structures are increasingly popular with biological engineers due to their potential utility as nanobioreactors or drug delivery vehicles. However, the limited understanding of the assembly mechanism of these bacterial microcompartments hinders efforts to repurpose them for non-native functions. Here, we comprehensively investigate proteins involved in the assembly of the 1,2-propanediol utilization bacterial microcompartment from Salmonella enterica serovar Typhimurium LT2, one of the most widely studied microcompartment systems. We first demonstrate that two shell proteins, PduA and PduJ, have a high propensity for self-assembly upon overexpression, and we provide a novel method for self-assembly quantification. Using genomic knock-outs and knock-ins, we systematically show that these two proteins play an essential and redundant role in bacterial microcompartment assembly that cannot be compensated by other shell proteins. At least one of the two proteins PduA and PduJ must be present for the bacterial microcompartment shell to assemble. We also demonstrate that assembly-deficient variants of these proteins are unable to rescue microcompartment formation, highlighting the importance of this assembly property. Our work provides insight into the assembly mechanism of these bacterial organelles and will aid downstream engineering efforts.


Assuntos
Proteínas de Bactérias/metabolismo , Salmonella enterica/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Técnicas de Silenciamento de Genes , Ordem dos Genes , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Salmonella enterica/ultraestrutura
2.
Microb Cell Fact ; 17(1): 135, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30165868

RESUMO

Biotechnological processes use microbes to convert abundant molecules, such as glucose, into high-value products, such as pharmaceuticals, commodity and fine chemicals, and energy. However, from the outset of the development of a new bioprocess, it is difficult to determine the feasibility, expected yields, and targets for engineering. In this review, we describe a methodology that uses rough estimates to assess the feasibility of a process, approximate the expected product titer of a biological system, and identify variables to manipulate in order to achieve the desired performance. This methodology uses estimates from literature and biological intuition, and can be applied in the early stages of a project to help plan future engineering. We highlight recent literature examples, as well as two case studies from our own work, to demonstrate the use and power of rough estimates. Describing and predicting biological function using estimates guides the research and development phase of new bioprocesses and is a useful first step to understand and build a new microbial factory.


Assuntos
Engenharia Celular/métodos , Biologia Sintética/métodos
3.
ACS Synth Biol ; 6(10): 1880-1891, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-28585808

RESUMO

Bacterial microcompartments are a class of proteinaceous organelles comprising a characteristic protein shell enclosing a set of enzymes. Compartmentalization can prevent escape of volatile or toxic intermediates, prevent off-pathway reactions, and create private cofactor pools. Encapsulation in synthetic microcompartment organelles will enhance the function of heterologous pathways, but to do so, it is critical to understand how to control diffusion in and out of the microcompartment organelle. To this end, we explored how small differences in the shell protein structure result in changes in the diffusion of metabolites through the shell. We found that the ethanolamine utilization (Eut) protein EutM properly incorporates into the 1,2-propanediol utilization (Pdu) microcompartment, altering native metabolite accumulation and the resulting growth on 1,2-propanediol as the sole carbon source. Further, we identified a single pore-lining residue mutation that confers the same phenotype as substitution of the full EutM protein, indicating that small molecule diffusion through the shell is the cause of growth enhancement. Finally, we show that the hydropathy index and charge of pore amino acids are important indicators to predict how pore mutations will affect growth on 1,2-propanediol, likely by controlling diffusion of one or more metabolites. This study highlights the use of two strategies to engineer microcompartments to control metabolite transport: altering the existing shell protein pore via mutation of the pore-lining residues, and generating chimeras using shell proteins with the desired pores.


Assuntos
Engenharia de Proteínas/métodos , Etanolamina/metabolismo , Mutação , Propilenoglicol/metabolismo , Salmonella enterica/metabolismo
4.
Protein Sci ; 26(5): 1086-1092, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28241402

RESUMO

Organizing heterologous biosyntheses inside bacterial cells can alleviate common problems owing to toxicity, poor kinetic performance, and cofactor imbalances. A subcellular organelle known as a bacterial microcompartment, such as the 1,2-propanediol utilization microcompartment of Salmonella, is a promising chassis for this strategy. Here we demonstrate de novo design of the N-terminal signal sequences used to direct cargo to these microcompartment organelles. We expand the native repertoire of signal sequences using rational and library-based approaches and show that a canonical leucine-zipper motif can function as a signal sequence for microcompartment localization. Our strategy can be applied to generate new signal sequences localizing arbitrary cargo proteins to the 1,2-propanediol utilization microcompartments.


Assuntos
Proteínas de Bactérias , Propilenoglicol/metabolismo , Engenharia de Proteínas , Sinais Direcionadores de Proteínas/genética , Salmonella typhimurium , Proteínas de Bactérias/metabolismo , Zíper de Leucina/genética , Transporte Proteico/genética , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA