Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29926932

RESUMO

PURPOSE: Quantitative computed tomography (QCT)-derived measures of lung density are valued methods for objectively characterizing lung parenchymal and peripheral airways disease and are being used in a growing number of lung disease focused trials. Detector and reconstruction improvements in CT technology have allowed for significant radiation dose reduction in image acquisition with comparable qualitative image quality. We report the impact of detector type and reconstruction type on QCT lung density measures in relation to decreasing dose indices. METHODS: Two sets of studies were completed in an in vivo pig model with a SOMATOM Definition Flash CT system: (a) prior to system upgrade with conventional detectors (UFC) and filtered back projection (FBP), and (b) post system upgrade with integrated electronic detectors (STELLAR) and iterative reconstruction (SAFIRE). CT data were acquired across estimated CT volume dose indices (CTDIvol ) ranging from 0.75 to 15 mGy at both inspiratory and expiratory breath holds. Semiautomated lung segmentations allowed calculation of histogram median, kurtosis, and 15th percentile. Percentage of voxels below -910 HU and -950 HU (inspiratory), and -856 HU (expiratory) were also examined. The changes in these QCT metrics from dose reduction (15 mGy down to 0.75 mGy) were calculated relative to paired reference values (15 mGy). Results were compared based on detector and reconstruction type. RESULTS: In this study, STELLAR detectors improved concordance with 15 mGy values down to 3 mGy for inspiratory scans and 6 mGy for expiratory scans. The addition of SAFIRE reconstruction in all acquired measurements resulted in minimal deviation from reference values at 0.75 mGy. CONCLUSION: The use of STELLAR integrated electronic detectors and SAFIRE iterative reconstruction may allow for comparable lung density measures with CT dose indices down to 0.75 mGy.

2.
Clin Genet ; 89(4): 466-472, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26346818

RESUMO

Recent advances in targeted genomic enrichment with massively parallel sequencing (TGE+MPS) have made comprehensive genetic testing for non-syndromic hearing loss (NSHL) possible. After excluding NSHL subjects with causative mutations in GJB2 and the MT-RNR1 (1555A>G) variant by Sanger sequencing, we completed TGE+MPS on 194 probands with presumed NSHL identified across Japan. We used both publicly available minor allele frequency (MAF) datasets and ethnic-specific MAF filtering against an in-house database of 200 normal-hearing Japanese controls. Ethnic-specific MAF filtering allowed us to re-categorize as common 203 variants otherwise annotated as rare or novel in non-Japanese ethnicities. This step minimizes false-positive results and improves the annotation of identified variants. Causative variants were identified in 27% of probands with solve rates of 35%, 35% and 19% for dominant, recessive and sporadic NSHL, respectively. Mutations in MYO15A and CDH23 follow GJB2 as the frequent causes of recessive NSHL; copy number variations in STRC are a major cause of mild-to-moderate NSHL. Ethnic-specific filtering by allele frequency is essential to optimize the interpretation of genetic data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA