Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37398423

RESUMO

Sex allocation theory generally assumes maternal control of offspring sex and makes few predictions for populations evolving under paternal control. Using population genetic simulations, we show that maternal and paternal control of the sex ratio lead to different equilibrium sex ratios in structured populations. Sex ratios evolved under paternal control are more female biased. This effect is dependent on the population subdivision; fewer founding individuals leads to both more biased sex ratios and a greater difference between the paternal and maternal equilibria. In addition, sexual antagonism evolves in simulations with both maternally- and paternally-acting loci. Maternally-acting loci continuously accumulate ever more female-biasing effects as male-biasing effects accumulate at paternally-acting loci. The difference in evolved sex-ratio equilibria and the evolution of sexual antagonism can be largely explained by differences in the between-group variance of maternal and paternal effects in the founding generation. These theoretical results apply to any system with biparental autosomal influence over offspring sex, opening up an exciting new line of questioning.

2.
Ecol Evol ; 12(7): e9124, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35898425

RESUMO

Factors shaping the distribution and abundance of species include life-history traits, population structure, and stochastic colonization-extinction dynamics. Field studies of model species groups help reveal the roles of these factors. Species of Caenorhabditis nematodes are highly divergent at the sequence level but exhibit highly conserved morphology, and many of these species live in sympatry on microbe-rich patches of rotten material. Here, we use field experiments and large-scale opportunistic collections to investigate species composition, abundance, and colonization efficiency of Caenorhabditis species in two of the world's best-studied lowland tropical field sites: Barro Colorado Island in Panamá and La Selva in Sarapiquí, Costa Rica. We observed seven species of Caenorhabditis, four of them known only from these collections. We formally describe two species and place them within the Caenorhabditis phylogeny. While these localities contain species from many parts of the phylogeny, both localities were dominated by globally distributed androdiecious species. We found that Caenorhabditis individuals were able to colonize baits accessible only through phoresy and preferentially colonized baits that were in direct contact with the ground. We estimate the number of colonization events per patch to be low.

3.
J Vis Exp ; (179)2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35156660

RESUMO

Beyond being robust experimental model organisms, Caenorhabditis elegans and its relatives are also real animals that live in nature. Studies of wild nematodes in their natural environments are valuable for understanding many aspects of biology, including the selective regimes in which distinctive genomic and phenotypic characters evolve, the genetic basis for complex trait variation, and the natural genetic diversity fundamental to all animal populations. This manuscript describes a simple and efficient method for extracting nematodes from their natural substrates, including rotting fruits, flowers, fungi, leaf litter, and soil. The Baermann funnel method, a classical nematology technique, selectively isolates active nematodes from their substrates. Because it recovers nearly all active worms from the sample, the Baermann funnel technique allows for the recovery of rare and slow-growing genotypes that co-occur with abundant and fast-growing genotypes, which might be missed in extraction methods that involve multiple generations of reproduction. The technique is also well suited to addressing metagenetic, population-genetic, and ecological questions. It captures the entire population in a sample simultaneously, allowing an unbiased view of the natural distribution of ages, sexes, and genotypes. The protocol allows for deployment at scale in the field, rapidly converting substrates into worm plates, and the authors have validated it through fieldwork on multiple continents.


Assuntos
Nematoides , Animais , Caenorhabditis elegans/genética , Meio Ambiente , Genótipo , Nematoides/genética , Solo
4.
Genetics ; 208(3): 991-1007, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29339410

RESUMO

Meiotic recombination depends upon the tightly coordinated regulation of chromosome dynamics and is essential for the production of haploid gametes. Central to this process is the formation and repair of meiotic double-stranded breaks (DSBs), which must take place within the constraints of a specialized chromatin architecture. Here, we demonstrate a role for the nucleosome remodeling and deacetylase (NuRD) complex in orchestrating meiotic chromosome dynamics in Caenorhabditis elegans Our data reveal that the conserved Mi2 homologs Chromodomain helicase DNA-binding protein (CHD-3) and its paralog LET-418 facilitate meiotic progression by ensuring faithful repair of DSBs through homologous recombination. We discovered that loss of either CHD-3 or LET-418 results in elevated p53-dependent germ line apoptosis, which relies on the activation of the conserved checkpoint kinase CHK-1 Consistent with these findings, chd-3 and let-418 mutants produce a reduced number of offspring, indicating a role for Mi2 in forming viable gametes. When Mi2 function is compromised, persisting recombination intermediates are detected in late pachytene nuclei, indicating a failure in the timely repair of DSBs. Intriguingly, our data indicate that in Mi2 mutant germ lines, a subset of DSBs are repaired by nonhomologous end joining, which manifests as chromosomal fusions. We find that meiotic defects are exacerbated in Mi2 mutants lacking CKU-80, as evidenced by increased recombination intermediates, corpses, and defects in chromosomal integrity. Taken together, our findings support a model wherein the C. elegans Mi2 complex maintains genomic integrity through reinforcement of a chromatin landscape suitable for homology-driven repair mechanisms.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Genoma , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Animais , Apoptose/genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Fertilidade , Células Germinativas/metabolismo , Meiose/genética , Recombinação Genética
5.
Genetics ; 204(3): 883-891, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-28114101

RESUMO

The mechanisms cells use to maintain genetic fidelity via DNA repair and the accuracy of these processes have garnered interest from scientists engaged in basic research to clinicians seeking improved treatment for cancer patients. Despite the continued advances, many details of DNA repair are still incompletely understood. In addition, the inherent complexity of DNA repair processes, even at the most fundamental level, makes it a challenging topic. This primer is meant to assist both educators and students in using a recent paper, "Promotion of homologous recombination by SWS-1 in complex with RAD-51 paralogs in Caenorhabditis elegans," to understand mechanisms of DNA repair. The goals of this primer are to highlight and clarify several key techniques utilized, with special emphasis on the clustered, regularly interspaced, short palindromic repeats technique and the ways in which it has revolutionized genetics research, as well as to provide questions for deeper in-class discussion.


Assuntos
Sistemas CRISPR-Cas , Caenorhabditis elegans/genética , Reparo do DNA , Genética/educação , Recombinação Homóloga , Animais , Proteínas de Caenorhabditis elegans/genética , Rad51 Recombinase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...